Journal of Computer-Aided Molecular Design

, Volume 30, Issue 8, pp 619–624 | Cite as

Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules

  • Agustina ArroyueloEmail author
  • Jorge A. Vila
  • Osvaldo A. MartinEmail author


Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from and the source code is available at


Glycans Structural bioinformatics Modelling 



This work was supported by: A Warren L. DeLano Memorial PyMOL Open-Source Fellowship; PIP-0030 from CONICET-Argentina; and PICT-2014-0556 from ANPCyT-Argentina.


  1. 1.
    Schrodinger L (2010) The PyMOL molecular graphics system, version 1.3r1Google Scholar
  2. 2.
    National Research Council (US) (2012) Transforming glycoscience: a roadmap for the future. The national academies collection: reports funded by National Institutes of Health. National Academies Press (US), Washington (DC).
  3. 3.
    Campbell MP, Ranzinger R, Lutteke T, Mariethoz J, Hayes CA, Zhang J, Akune Y, Aoki-Kinoshita KF, Damerell D, Carta G, York WS, Haslam SM, Narimatsu H, Rudd PM, Karlsson NG, Packer NH, Lisacek F (2014) BMC Bioinformatics 15(Suppl 1):S9. doi: 10.1186/1471-2105-15-S1-S9.
  4. 4.
    Ohtsubo K, Marth JD (2006) Cell 126(5):855. doi: 10.1016/j.cell.2006.08.019 CrossRefGoogle Scholar
  5. 5.
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).
  6. 6.
    Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90. doi: 10.1038/srep00090
  7. 7.
    Ranzinger R, Frank M, Von der Lieth CW, Herget S (2009) Glycobiology 19(12):1563. doi: 10.1093/glycob/cwp137.
  8. 8.
    Engelsen SB, Hansen PI, Pérez S (2014) Biopolymers 101(7):733. doi: 10.1002/bip.22449 CrossRefGoogle Scholar
  9. 9.
    Ceroni A, Dell A, Haslam SM (2007) Source Code Biol Med 2(1):1. doi: 10.1186/1751-0473-2-3 CrossRefGoogle Scholar
  10. 10.
    Kuttel M, Mao Y, Widmalm G, Lundborg M (2011) CarbBuilder: an adjustable tool for building 3D molecular structures of carbohydrates for molecular simulation. In: Proceedings of the 7th IEEE International Conference e-Science, Dec 2011, pp 395–402. doi: 10.1109/eScience.2011.61
  11. 11.
    van Rossum G (1995) Python programming language version 2:7Google Scholar
  12. 12.
    Walt SVD, Colbert SC, Varoquaux G (2011) Comput Sci Eng 13(2):22. doi: 10.1109/MCSE.2011.37 CrossRefGoogle Scholar
  13. 13.
    Hunter JD (2007) Comput Sci Eng 9(3):90. doi: 10.1109/MCSE.2007.55 CrossRefGoogle Scholar
  14. 14.
    Shipman JW (2013) Tkinter 8.5 reference: a gui for python.
  15. 15.
  16. 16.
    Lütteke T, von der Lieth CW (2004) BMC Bioinform 5(1):1. doi: 10.1186/1471-2105-5-69 CrossRefGoogle Scholar
  17. 17.
    Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Mol Biol 42(4):623. doi: 10.1134/S0026893308040195 CrossRefGoogle Scholar
  18. 18.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33CrossRefGoogle Scholar
  19. 19.
    Li Z, Scheraga HA (1987) Proc Natl Acad Sci 84(19):6611. Bibtex: li_monte_1987
  20. 20.
    Hastings WK (1970) Biometrika 57(1):97. doi: 10.1093/biomet/57.1.97 CrossRefGoogle Scholar
  21. 21.
    Nayeem A, Vila J, Scheraga HA (1991) J Comput Chem 12(5):594. doi: 10.1002/jcc.540120509. Bibtex: nayeem_comparative_1991
  22. 22.
  23. 23.
    O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2011) J Cheminformatics 3(1):33. doi: 10.1186/1758-2946-3-33.
  24. 24.
    Shrake A, Rupley J (1973) J Mol Biol 79(2):351–371CrossRefGoogle Scholar
  25. 25.
    Vila J, Williams RL, Vásquez M, Scheraga HA (1991) Proteins 10(3):199. doi: 10.1002/prot.340100305 CrossRefGoogle Scholar
  26. 26.
    Garay PG, Martin OA, Scheraga HA, Vila JA (2014) J Comput Chem 35(25):1854. doi: 10.1002/jcc.23697 CrossRefGoogle Scholar
  27. 27.
    Lutteke T, Frank M, von der Lieth CW (2005) Nucleic acids research 33(Database issue), D242. doi: 10.1093/nar/gki013. Bibtex: lutteke_carbohydrate_2005
  28. 28.
    Esteban C (2016) Doctoral thesis (personal communication)Google Scholar
  29. 29.
    Frank TLM, von der Lieth CW (2007).
  30. 30.
    Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49. doi: 10.1016/j.plantsci.2013.03.007 CrossRefGoogle Scholar
  31. 31.
    Lederle FA, Freischlag JA, Kyriakides TC et al (2009) Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA 302(14):1535–1542. doi: 10.1001/jama.2009.1426 CrossRefGoogle Scholar
  32. 32.
    Fernandez JG, Ingber DE (2014) Macromol Mater Eng 299(8):932. doi: 10.1002/mame.201300426 CrossRefGoogle Scholar
  33. 33.
    Berendsen H, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91(1–3):43. doi: 10.1016/0010-4655(95)00042-E CrossRefGoogle Scholar
  34. 34.
    Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25(13):1656. doi: 10.1002/jcc.20090 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Matemática Aplicada San Luis, IMASLUniversidad Nacional de San Luis and CONICETSan LuisArgentina

Personalised recommendations