Journal of Computer-Aided Molecular Design

, Volume 31, Issue 1, pp 61–70 | Cite as

Blinded predictions of host-guest standard free energies of binding in the SAMPL5 challenge

  • Stefano Bosisio
  • Antonia S. J. S. Mey
  • Julien MichelEmail author


In the context of the SAMPL5 blinded challenge standard free energies of binding were predicted for a dataset of 22 small guest molecules and three different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC). Three sets of predictions were submitted, each based on different variations of classical molecular dynamics alchemical free energy calculation protocols based on the double annihilation method. The first model (model A) yields a free energy of binding based on computed free energy changes in solvated and host-guest complex phases; the second (model B) adds long range dispersion corrections to the previous result; the third (model C) uses an additional standard state correction term to account for the use of distance restraints during the molecular dynamics simulations. Model C performs the best in terms of mean unsigned error for all guests (MUE \(3.2\,<\,3.4\,<\,3.6\,\text{kcal}\,\text{mol}^{-1}\)—95 % confidence interval) for the whole data set and in particular for the octa-acid systems (MUE \(1.7\,<\,1.9\,<\,2.1\,\text{kcal}\,\text{mol}^{-1}\)). The overall correlation with experimental data for all models is encouraging (\(R^2\, 0.65\,<\,0.70<0.75\)). The correlation between experimental and computational free energy of binding ranks as one of the highest with respect to other entries in the challenge. Nonetheless the large MUE for the best performing model highlights systematic errors, and submissions from other groups fared better with respect to this metric.


SAMPL5 Binding free energies Host-guest systems 



J. M. is supported by a Royal Society University Research Fellowship. The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/ 2007-2013)/ERC Grant Agreement No. 336289.


  1. 1.
    Michel J (2014) Phys Chem Chem Phys 16(10):4465–4477CrossRefGoogle Scholar
  2. 2.
    Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) J Comput Aided Mol Des 24(4):259–279CrossRefGoogle Scholar
  3. 3.
    Skillman AG (2012) J Comput Aided Mol Des 26(5):473–474CrossRefGoogle Scholar
  4. 4.
    Guthrie JP (2009) J Phys Chem B 113(14):4501–4507CrossRefGoogle Scholar
  5. 5.
    Michel J, Henchman RH, Gerogiokas G, Southey MWY, Mazanetz MP, Law RJ (2014) J Chem Theory Comput 10(9):4055–4068CrossRefGoogle Scholar
  6. 6.
    Jorgensen LW, Thomas LL (2008) J Chem Theory Comput 4(6):869–876CrossRefGoogle Scholar
  7. 7.
    Woods CJ, Malaisree M, Hannongbua S, Mulholland AJ (2011) J Chem Phys. doi: 10.1063/1.3519057 Google Scholar
  8. 8.
    Chang C-E, Gilson MK (2004) J Am Chem Soc 126(40):13156–13164CrossRefGoogle Scholar
  9. 9.
    Muddana SH, Gilson MK (2012) J Chem Theory Comput 8(6):2023–2033CrossRefGoogle Scholar
  10. 10.
    Mikulskis P, Cioloboc D, Andrejić M, Khare S, Brorsson J, Genheden S, Mata RA, Söderhjelm P, Ryde U (2014) J Comput Aided Mol Des 28(4):375–400CrossRefGoogle Scholar
  11. 11.
    König G, Pickard IV FC, Mei Y, Brooks BR (2014) J Comput Aided Mol Des 28(3):245–257CrossRefGoogle Scholar
  12. 12.
    Beckstein O, Fourrier A, Iorga BI (2014) J Comput Aided Mol Des 28(3):265–276CrossRefGoogle Scholar
  13. 13.
    Monroe JI, Shirts MR (2014) J Comput Aided Mol Des 28(4):401–415CrossRefGoogle Scholar
  14. 14.
    Chen I-J, Foloppe N (2011) Drug Develop Res 72(1):85–94CrossRefGoogle Scholar
  15. 15.
    Halgren TA, Damm W (2001) Curr Opin Struct Biol 11(2):236–242CrossRefGoogle Scholar
  16. 16.
    Kastenholz MA, Hnenberger PH (2004) J Phys Chem B 108(2):774–788CrossRefGoogle Scholar
  17. 17.
    Jorgensen LW, Ravimohan C (1985) J Chem Phys 83(6):3050–3054CrossRefGoogle Scholar
  18. 18.
    Mezei M (1987) J Chem Phys 86(12):7084–7088CrossRefGoogle Scholar
  19. 19.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33(12):889–897CrossRefGoogle Scholar
  20. 20.
    Gibb CLD, Gibb CB (2013) J Comput Aided Mol Des 28(4):319–325CrossRefGoogle Scholar
  21. 21.
    Gilberg L, Zhang B, Zavalij PY, Sindelar V, Isaacs L (2015) Org Biomol Chem 13:4041–4050CrossRefGoogle Scholar
  22. 22.
    Zhang B, Isaacs L (2014) J Med Chem 57(22):9554–9563CrossRefGoogle Scholar
  23. 23.
    Sure R, Antony J, Grimme S (2014) J Phys Chem B 118(12):3431–3440CrossRefGoogle Scholar
  24. 24.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157–1174CrossRefGoogle Scholar
  25. 25.
    Mishra SK, Calabr G, Loeffler HH, Michel J, Koa J (2015) J Chem Theory Comput 11(7):3333–3345CrossRefGoogle Scholar
  26. 26.
    Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC (2016) Chem Sci 7(1):207–218CrossRefGoogle Scholar
  27. 27.
    Jorgensen WL, Buckner JK, Boudon S, Tirado-Rives J (1988) J Chem Phys 89(6):3742–3746CrossRefGoogle Scholar
  28. 28.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72(3):1047CrossRefGoogle Scholar
  29. 29.
    Michel J, Essex JW (2010) J Comput Aided Mol Des 24(8):639–658CrossRefGoogle Scholar
  30. 30.
    Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) J Phys Chem B 111(45):13052–13063CrossRefGoogle Scholar
  31. 31.
    Zwanzig WR (1954) J Chem Phys 22(8):1420–1426CrossRefGoogle Scholar
  32. 32.
    Frenkel D, Smit B (2001) Understanding molecular simulation, 2nd edn. Academic Press Inc, OrlandoGoogle Scholar
  33. 33.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  34. 34.
    Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham III DS, Darden TA, Duke TA, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossvary I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14, University of California, San FranciscoGoogle Scholar
  35. 35.
    Woods C, Mey ASJ, Calabro G, Michel J (2016) Sire molecular simulations framework. Accessed May 31
  36. 36.
    Eastman P, Friedrichs MS, Chodera JD, Radmer RJ, Bruns CM, Ku JP, Beauchamp KA, Lane TJ, Wang L-P, Shukla D, Tye T, Houston M, Stich T, Klein C, Shirts MR, Pande VS (2013) J Chem Theory Comput 9(1):461–469CrossRefGoogle Scholar
  37. 37.
    Roe RD, Cheatham TE III (2013) J Chem Theory Comput 9(7):3084–3095CrossRefGoogle Scholar
  38. 38.
    Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) J Comput Aided Mol Des 28(4):305–317CrossRefGoogle Scholar
  39. 39.
    Schrödinger release 2015-2: Maestro, version 10.2, schrödinger, llc, New York, NY, 2015Google Scholar
  40. 40.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132–146 (cited By 552)CrossRefGoogle Scholar
  41. 41.
    Shirts MR, Chodera JD (2008) J Chem Phys. doi: 10.1063/1.2978177 Google Scholar
  42. 42.
    Hopkins CW, Le Grand S, Walker RC, Roitberg AE (2015) J Chem Theory Comput 11(4):1864–1874CrossRefGoogle Scholar
  43. 43.
    Andersen HC (1980) J Chem Phys 72:2384–2393CrossRefGoogle Scholar
  44. 44.
    Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) J Chem Phys 102(13):5451–5459CrossRefGoogle Scholar
  45. 45.
    Gan H, Benjamin CJ, Gibb BC (2011) J Am Chem Soc 133(13):4770–4773CrossRefGoogle Scholar
  46. 46.
    Yin J, Henriksen NM, Slochower DR, Chiu MW, Mobley DL, Gilson MK (2016) Overview of the SAMPL5 host-guest challenge: are we doing better? J Comput Aided Mol Des (under review)Google Scholar
  47. 47.
    Bosisio S, Mey ASJS, Michel J (2016) Blinded predictions of distribution coefficients in the SAMPL5 challenge. J Comput Aided Mol Des (under review)Google Scholar
  48. 48.
  49. 49.
    Yin J, Henriksen NM, Slochower DR, Gilson MK (2016) The SAMPL5 host-guest challenge: binding free energies and enthalpies from explicit solvent simulations. J Comput Aided Mol Des (under review)Google Scholar
  50. 50.
    Goetz AW, Poole D, Le Grand S, Walker RC, Salomon-Ferrer R (2013) J Chem Theory Comput 9:3878–3888CrossRefGoogle Scholar
  51. 51.
    Velez-Vega C, Gilso MK (2013) J Comput Chem 34(27):2360–2371Google Scholar
  52. 52.
    Kastenholz MA, Hünenberger PH (2006) J Chem Phys 124(12):124106CrossRefGoogle Scholar
  53. 53.
    Kastenholz MA, Hünenberger PH (2006) J Chem Phys 124(22):224501CrossRefGoogle Scholar
  54. 54.
    Reif MM, Oostenbrink C (2014) J Comput Chem 35(3):227–243CrossRefGoogle Scholar
  55. 55.
    Rocklin GJ, Boyce SE, Fischer M, Fish I, Mobley DL, Shoichet BK, Dill KA (2013) J Mol Biol 425(22):4569–4583CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Bosisio
    • 1
  • Antonia S. J. S. Mey
    • 1
  • Julien Michel
    • 1
    Email author
  1. 1.EaStCHEM School of ChemistryUniversity of EdinburghEdinburghUK

Personalised recommendations