Journal of Computer-Aided Molecular Design

, Volume 31, Issue 2, pp 219–235 | Cite as

RNAHelix: computational modeling of nucleic acid structures with Watson–Crick and non-canonical base pairs

  • Dhananjay BhattacharyyaEmail author
  • Sukanya Halder
  • Sankar Basu
  • Debasish Mukherjee
  • Prasun Kumar
  • Manju BansalEmail author


Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson–Crick or non-Watson–Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.


Molecular modeling RNA Non Watson–Crick base pairs Base pair parameters Dinucleotide step parameters Electrostatic potential 



This work has been supported by the Department of Atomic Energy, Govt. of India and Department of Biotechnology, Govt. of India. MB is recipient of J.C. Bose National Fellowship from DST, India.

Supplementary material

10822_2016_7_MOESM1_ESM.pdf (476 kb)
Supplementary material 1 (PDF 476 KB)


  1. 1.
    Kim SH, Suddath FL, Quigley GJ et al (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440. doi: 10.1126/science.185.4149.435 CrossRefGoogle Scholar
  2. 2.
    Holbrook SR, Cheong C, Tinoco I, Kim SH (1991) Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs. Nature 353:579–581CrossRefGoogle Scholar
  3. 3.
    Cruse WB, Saludjian P, Biala E et al (1994) Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure. Proc Natl Acad Sci USA 91:4160–4164CrossRefGoogle Scholar
  4. 4.
    Egli M, Portmann S, Usman N (1996) RNA hydration: a detailed look †, ‡. BioChemistry 35:8489–8494. doi: 10.1021/bi9607214 CrossRefGoogle Scholar
  5. 5.
    Lenz T, Bonnist EYM, Pljevaljčić G et al (2007) 2-aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M. TaqI: crystal structures and time-resolved fluorescence. J Am Chem Soc 129:6240–6248. doi: 10.1021/ja069366n CrossRefGoogle Scholar
  6. 6.
    Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512CrossRefGoogle Scholar
  7. 7.
    Bhattacharya S, Mittal S, Panigrahi S, et al. (2015) RNABP COGEST: a resource for investigating functional RNAs. Database (Oxford) bav011. doi: 10.1093/database/bav011
  8. 8.
    Olson WK, Bansal M, Burley SK et al (2001) A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Biol 313:229–237. doi: 10.1006/jmbi.2001.4987 CrossRefGoogle Scholar
  9. 9.
    Dickerson RE (1989) Definitions and nomenclature of nucleic acid structure parameters. J Biomol Struct Dyn 6:627–634. doi: 10.1080/07391102.1989.10507726 CrossRefGoogle Scholar
  10. 10.
    Calladine CR (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 161:343–352. doi: 10.1016/0022-2836(82)90157-7 CrossRefGoogle Scholar
  11. 11.
    Ravishanker G, Swaminathan S, Beveridge DL et al (1989) Conformational and helicoidal analysis of 30 PS of molecular dynamics on the d(CGCGAATTCGCG) double helix: “curves”, dials and windows. J Biomol Struct Dyn 6:669–699. doi: 10.1080/07391102.1989.10507729 CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya D, Bansal M (1990) Local variability and base sequence effects in DNA crystal structures. J Biomol Struct Dyn 8:539–572. doi: 10.1080/07391102.1990.10507828 CrossRefGoogle Scholar
  13. 13.
    Babcock MS, Olson WK (1994) The effect of mathematics and coordinate system on comparability and “dependencies” of nucleic acid structure parameters. J Mol Biol 237:98–124. doi: 10.1006/jmbi.1994.1212 CrossRefGoogle Scholar
  14. 14.
    Bandyopadhyay D, Bhattacharyya D (2000) Effect of neighboring bases on base-pair stacking orientation: a molecular dynamics study. J Biomol Struct Dyn 18:29–43. doi: 10.1080/07391102.2000.10506645 CrossRefGoogle Scholar
  15. 15.
    Beveridge DL, Barreiro G, Suzie Byun K et al (2004) Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps. Biophys J 87:3799–3813. doi: 10.1529/biophysj.104.045252 CrossRefGoogle Scholar
  16. 16.
    Fujii S, Kono H, Takenaka S et al (2007) Sequence-dependent DNA deformability studied using molecular dynamics simulations. Nucleic Acids Res 35:6063–6074. doi: 10.1093/nar/gkm627 CrossRefGoogle Scholar
  17. 17.
    Davey CA, Sargent DF, Luger K et al (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113. doi: 10.1016/S0022-2836(02)00386-8 CrossRefGoogle Scholar
  18. 18.
    Wu B, Mohideen K, Vasudevan D, Davey CA (2010) Structural insight into the sequence dependence of nucleosome positioning. Structure 18:528–536. doi: 10.1016/j.str.2010.01.015 CrossRefGoogle Scholar
  19. 19.
    Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117. doi: 10.1146/annurev-biophys-042910-155329 CrossRefGoogle Scholar
  20. 20.
    Halder S, Bhattacharyya D (2010) Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA. J Phys Chem B 114:14028–14040. doi: 10.1021/jp102835t CrossRefGoogle Scholar
  21. 21.
    Halder S, Bhattacharyya D (2012) Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis. J Phys Chem B 116:11845–11856. doi: 10.1021/jp305628v CrossRefGoogle Scholar
  22. 22.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi: 10.1093/nar/28.1.235 CrossRefGoogle Scholar
  23. 23.
    Mohanty D, Bansal M (1991) DNA polymorphism and local variation in base-pair orientation: a theoretical rationale. J Biomol Struct Dyn 9:127–142. doi: 10.1080/07391102.1991.10507898 CrossRefGoogle Scholar
  24. 24.
    Hunter CA (1993) Sequence-dependent DNA structure. The role of base stacking interactions. J Mol Biol 230:1025–1054. doi: 10.1006/jmbi.1993.1217 CrossRefGoogle Scholar
  25. 25.
    Mondal M, Halder S, Chakrabarti J, Bhattacharyya D (2016) Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs. Biopolymers 105:212–226. doi: 10.1002/bip.22787 CrossRefGoogle Scholar
  26. 26.
    Lu X-JXJ, Olson WK (2003) 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121. doi: 10.1093/nar/gkg680 CrossRefGoogle Scholar
  27. 27.
    Lu X-J, Olson WK (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc 3:1213–1227. doi: 10.1038/nprot.2008.104 CrossRefGoogle Scholar
  28. 28.
    van Dijk M, Bonvin AMJJ (2009) 3D-DART: a DNA structure modelling server. Nucleic Acids Res 37:W235–W239. doi: 10.1093/nar/gkp287 CrossRefGoogle Scholar
  29. 29.
    Bansal M, Bhattacharyya D, Ravi B (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Bioinformatics 11:281–287. doi: 10.1093/bioinformatics/11.3.281 CrossRefGoogle Scholar
  30. 30.
    Macke TJ, Case DA (1997) Modeling unusual nucleic acid structures. In: ACS Symp. Ser. pp 379–393Google Scholar
  31. 31.
    Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55. doi: 10.1038/nature06684 CrossRefGoogle Scholar
  32. 32.
    Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112. doi: 10.1093/nar/gks339 CrossRefGoogle Scholar
  33. 33.
    Lu X-J, El Hassan MA, Hunter CA (1997) Structure and conformation of helical nucleic acids: rebuilding program (SCHNArP). J Mol Biol 273:681–691. doi: 10.1006/jmbi.1997.1345 CrossRefGoogle Scholar
  34. 34.
    Bhattacharya D, Bansal M (1988) A general procedure for generation of curved DNA molecules. J Biomol Struct Dyn 6:93–104. doi: 10.1080/07391102.1988.10506484 CrossRefGoogle Scholar
  35. 35.
    Bhattacharyya D, Bansal M (1989) A self-consistent formulation for analysis and generation of non-uniform DNA structures. J Biomol Struct Dyn 6:635–653. doi: 10.1080/07391102.1989.10507727 CrossRefGoogle Scholar
  36. 36.
    Mukherjee S, Bansal M, Bhattacharyya D (2006) Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Comput Aided Mol Des 20:629–645. doi: 10.1007/s10822-006-9083-x CrossRefGoogle Scholar
  37. 37.
    Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi: 10.1002/jcc.21287 CrossRefGoogle Scholar
  38. 38.
    Das J, Mukherjee S, Mitra A, Bhattacharyya D (2006) Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Biomol Struct Dyn 24:149–161. doi: 10.1080/07391102.2006.10507108 CrossRefGoogle Scholar
  39. 39.
    Panigrahi S, Pal R, Bhattacharyya D (2011) Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles. J Biomol Struct Dyn 29:541–556. doi: 10.1080/07391102.2011.10507404 CrossRefGoogle Scholar
  40. 40.
    Ray SS, Halder S, Kaypee S, Bhattacharyya D (2012) HD-RNAS: an automated hierarchical database of RNA structures. Front Genet 3:59. doi: 10.3389/fgene.2012.00059 CrossRefGoogle Scholar
  41. 41.
    Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19:1327–1340. doi: 10.1261/rna.039438.113 CrossRefGoogle Scholar
  42. 42.
    Clowney L, Jain SC, Srinivasan AR et al (1996) Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc 118:509–518. doi: 10.1021/ja952883d CrossRefGoogle Scholar
  43. 43.
    Cornell WD, Cieplak P, Bayly CI et al (1995) A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. doi: 10.1021/ja00124a002 CrossRefGoogle Scholar
  44. 44.
    Xu D, Zhang Y (2009) Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS One 4:e8140. doi: 10.1371/journal.pone.0008140 CrossRefGoogle Scholar
  45. 45.
    Basu S, Bhattacharyya D, Banerjee R (2012) Self-complementarity within proteins: bridging the gap between binding and folding. Biophys J 102:2605–2614. doi: 10.1016/j.bpj.2012.04.029 CrossRefGoogle Scholar
  46. 46.
    Rocchia W, Sridharan S, Nicholls A et al (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23:128–137. doi: 10.1002/jcc.1161 CrossRefGoogle Scholar
  47. 47.
    Li L, Li C, Sarkar S, et al. (2012) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5:9. doi: 10.1186/2046-1682-5-9 CrossRefGoogle Scholar
  48. 48.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/jcc.20084 CrossRefGoogle Scholar
  49. 49.
    Blanchet C, Pasi M, Zakrzewska K, Lavery R (2011) CURVES + web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res 39:W68–W73. doi: 10.1093/nar/gkr316 CrossRefGoogle Scholar
  50. 50.
    Saenger W (1984) Principles of nucleic acid. Structure. doi: 10.1007/978-1-4612-5190-3 Google Scholar
  51. 51.
    Ulanovsky LE, Trifonov EN (1987) Estimation of wedge components in curved DNA. Nature 326:720–722. doi: 10.1038/326720a0 CrossRefGoogle Scholar
  52. 52.
    Kailasam S, Bhattacharyya D, Bansal M et al (2014) Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. BMC Res Notes 7:83. doi: 10.1186/1756-0500-7-83 CrossRefGoogle Scholar
  53. 53.
    Leontis NB, Zirbel CL (2012) In: Leontis N, Westhof E (eds) Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking. Springer Berlin Heidelberg, Berlin, pp 281–298t;/bib>Google Scholar
  54. 54.
    Cheatham TE, Case DA (2013) Twenty-five years of nucleic acid simulations. Biopolymers 99:969–977. doi: 10.1002/bip.22331 Google Scholar
  55. 55.
    Arnott S, Hukins DW, Dover SD (1972) Optimised parameters for RNA double-helices. Biochem Biophys Res Commun 48:1392–1399CrossRefGoogle Scholar
  56. 56.
    Duarte CM, Pyle AM (1998) Stepping through an RNA structure: A novel approach to conformational analysis. J Mol Biol 284:1465–1478. doi: 10.1006/jmbi.1998.2233 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Computational Science DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Computational Biophysics, IFM, Bioinformatics DivisionUniversity of LinkopingLinköpingSweden
  3. 3.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
  4. 4.Department of BiochemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations