Journal of Computer-Aided Molecular Design

, Volume 30, Issue 2, pp 153–164 | Cite as

A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils

  • Nikolaos N. Louros
  • Fotis A. Baltoumas
  • Stavros J. Hamodrakas
  • Vassiliki A. IconomidouEmail author


Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.


Molecular dynamics Homology modelling β-Helix Functional amyloid Amyloid fibrils 



We thank the University of Athens for support. The authors declare no competing financial interests. The authors sincerely thank the Editor-in-Chief for properly handling this manuscript and the anonymous reviewers for their very valuable and constructive criticism, which helped us to considerably improve the manuscript. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility—ARIS under project ID PR001025-M.D.S.B.M.S.

Supplementary material

10822_2015_9892_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2381 kb)


  1. 1.
    Kushimoto T, Basrur V, Valencia J, Matsunaga J, Vieira WD, Ferrans VJ et al (2001) A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci USA 98(19):10698–10703. doi: 10.1073/pnas.191184798 CrossRefGoogle Scholar
  2. 2.
    Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152(4):809–824CrossRefGoogle Scholar
  3. 3.
    Berson JF, Harper DC, Tenza D, Raposo G, Marks MS (2001) Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 12(11):3451–3464CrossRefGoogle Scholar
  4. 4.
    Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV et al (2005) Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell 16(11):5356–5372. doi: 10.1091/mbc.E05-07-0626 CrossRefGoogle Scholar
  5. 5.
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):e6. doi: 10.1371/journal.pbio.0040006 CrossRefGoogle Scholar
  6. 6.
    Hoashi T, Muller J, Vieira WD, Rouzaud F, Kikuchi K, Tamaki K et al (2006) The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers. J Biol Chem 281(30):21198–21208. doi: 10.1074/jbc.M601643200 CrossRefGoogle Scholar
  7. 7.
    Hurbain I, Geerts WJ, Boudier T, Marco S, Verkleij AJ, Marks MS et al (2008) Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci USA 105(50):19726–19731. doi: 10.1073/pnas.0803488105 CrossRefGoogle Scholar
  8. 8.
    Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479(3):141–145CrossRefGoogle Scholar
  9. 9.
    Iconomidou VA, Hamodrakas SJ (2008) Natural protective amyloids. Curr Protein Pept Sci 9(3):291–309CrossRefGoogle Scholar
  10. 10.
    Shewmaker F, McGlinchey RP, Wickner RB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286(19):16533–16540. doi: 10.1074/jbc.R111.227108 CrossRefGoogle Scholar
  11. 11.
    Valencia JC, Rouzaud F, Julien S, Chen KG, Passeron T, Yamaguchi Y et al (2007) Sialylated core 1 O-glycans influence the sorting of Pmel17/gp100 and determine its capacity to form fibrils. J Biol Chem 282(15):11266–11280. doi: 10.1074/jbc.M608449200 CrossRefGoogle Scholar
  12. 12.
    Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161(3):521–533. doi: 10.1083/jcb.200302072 CrossRefGoogle Scholar
  13. 13.
    Leonhardt RM, Vigneron N, Rahner C, Cresswell P (2011) Proprotein convertases process Pmel17 during secretion. J Biol Chem 286(11):9321–9337. doi: 10.1074/jbc.M110.168088 CrossRefGoogle Scholar
  14. 14.
    Theos AC, Truschel ST, Raposo G, Marks MS (2005) The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 18(5):322–336. doi: 10.1111/j.1600-0749.2005.00269.x CrossRefGoogle Scholar
  15. 15.
    Watt B, van Niel G, Raposo G, Marks MS (2013) PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 26(3):300–315. doi: 10.1111/pcmr.12067 CrossRefGoogle Scholar
  16. 16.
    Cao Y, Cao R, Veitonmaki N (2002) Kringle structures and antiangiogenesis. Curr Med Chem Anticancer Agents 2(6):667–681CrossRefGoogle Scholar
  17. 17.
    Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF et al (2006) A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 10(3):343–354. doi: 10.1016/j.devcel.2006.01.012 CrossRefGoogle Scholar
  18. 18.
    Watt B, van Niel G, Fowler DM, Hurbain I, Luk KC, Stayrook SE et al (2009) N-terminal domains elicit formation of functional Pmel17 amyloid fibrils. J Biol Chem 284(51):35543–35555. doi: 10.1074/jbc.M109.047449 CrossRefGoogle Scholar
  19. 19.
    McGlinchey RP, Shewmaker F, McPhie P, Monterroso B, Thurber K, Wickner RB (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc Natl Acad Sci USA 106(33):13731–13736. doi: 10.1073/pnas.0906509106 CrossRefGoogle Scholar
  20. 20.
    McGlinchey RP, Yap TL, Lee JC (2011) The yin and yang of amyloid: insights from α-synuclein and repeat domain of Pmel17. Phys Chem Chem Phys 13(45):20066–20075. doi: 10.1039/c1cp21376h CrossRefGoogle Scholar
  21. 21.
    McGlinchey RP, Gruschus JM, Nagy A, Lee JC (2011) Probing fibril dissolution of the repeat domain of a functional amyloid, Pmel17, on the microscopic and residue level. Biochemistry 50(49):10567–10569. doi: 10.1021/bi201578h CrossRefGoogle Scholar
  22. 22.
    McGlinchey RP, Jiang Z, Lee JC (2014) Molecular origin of pH-dependent fibril formation of a functional amyloid. ChemBioChem 15(11):1569–1572. doi: 10.1002/cbic.201402074 CrossRefGoogle Scholar
  23. 23.
    Pfefferkorn CM, McGlinchey RP, Lee JC (2010) Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17. Proc Natl Acad Sci USA 107(50):21447–21452. doi: 10.1073/pnas.1006424107 CrossRefGoogle Scholar
  24. 24.
    McGlinchey RP, Shewmaker F, Hu KN, McPhie P, Tycko R, Wickner RB (2010) Repeat domains of melanosome matrix protein Pmel17 orthologs form amyloid fibrils at the acidic melanosomal pH. J Biol Chem 286(10):8385–8393. doi: 10.1074/jbc.M110.197152 CrossRefGoogle Scholar
  25. 25.
    Hu KN, McGlinchey RP, Wickner RB, Tycko R (2011) Segmental polymorphism in a functional amyloid. Biophys J 101(9):2242–2250. doi: 10.1016/j.bpj.2011.09.051 CrossRefGoogle Scholar
  26. 26.
    Kajava AV (2001) Review: proteins with repeated sequence—structural prediction and modeling. J Struct Biol 134(2–3):132–144. doi: 10.1006/jsbi.2000.4328 CrossRefGoogle Scholar
  27. 27.
    Kajava AV, Squire JM, Parry DA (2006) Beta-structures in fibrous proteins. Adv Protein Chem 73:1–15. doi: 10.1016/S0065-3233(06)73001-7 CrossRefGoogle Scholar
  28. 28.
    Yoder MD, Jurnak F (1995) Protein motifs. 3. The parallel beta helix and other coiled folds. FASEB J 9(5):335–342Google Scholar
  29. 29.
    Kajava AV, Steven AC (2006) Beta-rolls, beta-helices, and other beta-solenoid proteins. Adv Protein Chem 73:55–96. doi: 10.1016/S0065-3233(06)73003-0 CrossRefGoogle Scholar
  30. 30.
    Lazo ND, Downing DT (1998) Amyloid fibrils may be assembled from beta-helical protofibrils. Biochemistry 37(7):1731–1735. doi: 10.1021/bi971016d CrossRefGoogle Scholar
  31. 31.
    Downing DT, Lazo ND (1999) Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical. Biochem J 343(Pt 2):453–460CrossRefGoogle Scholar
  32. 32.
    Lazo ND, Downing DT (1999) Fibril formation by amyloid-beta proteins may involve beta-helical protofibrils. J Pept Res 53(6):633–640CrossRefGoogle Scholar
  33. 33.
    Hennetin J, Jullian B, Steven AC, Kajava AV (2006) Standard conformations of beta-arches in beta-solenoid proteins. J Mol Biol 358(4):1094–1105. doi: 10.1016/j.jmb.2006.02.039 CrossRefGoogle Scholar
  34. 34.
    Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. doi: 10.1093/nar/gkh131 CrossRefGoogle Scholar
  35. 35.
    Szklarczyk R, Heringa J (2004) Tracking repeats using significance and transitivity. Bioinformatics 20(Suppl 1):i311–i317. doi: 10.1093/bioinformatics/bth911 CrossRefGoogle Scholar
  36. 36.
    Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D (1999) A census of protein repeats. J Mol Biol 293(1):151–160. doi: 10.1006/jmbi.1999.3136 CrossRefGoogle Scholar
  37. 37.
    Biegert A, Soding J (2008) De novo identification of highly diverged protein repeats by probabilistic consistency. Bioinformatics 24(6):807–814. doi: 10.1093/bioinformatics/btn039 CrossRefGoogle Scholar
  38. 38.
    Heger A, Holm L (2000) Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41(2):224–237. doi: 10.1002/1097-0134(20001101)41:2<224:AID-PROT70>3.0.CO;2-Z CrossRefGoogle Scholar
  39. 39.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  40. 40.
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. doi: 10.1093/bioinformatics/btp033 CrossRefGoogle Scholar
  41. 41.
    Marsella L, Sirocco F, Trovato A, Seno F, Tosatto SC (2009) REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform. Bioinformatics 25(12):i289–i295. doi: 10.1093/bioinformatics/btp232 CrossRefGoogle Scholar
  42. 42.
    Di Domenico T, Potenza E, Walsh I, Parra RG, Giollo M, Minervini G et al (2014) RepeatsDB: a database of tandem repeat protein structures. Nucleic Acids Res 42:352–357. doi: 10.1093/nar/gkt1175 CrossRefGoogle Scholar
  43. 43.
    Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A (2004) The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J 23(4):701–711. doi: 10.1038/sj.emboj.7600100 CrossRefGoogle Scholar
  44. 44.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform. doi: 10.1002/0471250953.bi0506s15 Google Scholar
  45. 45.
    Tanner DE, Chan KY, Phillips JC, Schulten K (2011) Parallel generalized born implicit solvent calculations with NAMD. J Chem Theory Comput 7(11):3635–3642. doi: 10.1021/ct200563j CrossRefGoogle Scholar
  46. 46.
    Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. doi: 10.1002/jcc.21287 CrossRefGoogle Scholar
  47. 47.
    Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. doi: 10.1002/jcc.23354 CrossRefGoogle Scholar
  48. 48.
    Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8(11):4413–4424. doi: 10.1021/ct300696c CrossRefGoogle Scholar
  49. 49.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. doi: 10.1021/jp071097f CrossRefGoogle Scholar
  50. 50.
    Qi Y, Cheng X, Han W, Jo S, Schulten K, Im W (2014) CHARMM-GUI PACE CG Builder for solution, micelle, and bilayer coarse-grained simulations. J Chem Inf Model 54(3):1003–1009. doi: 10.1021/ci500007n CrossRefGoogle Scholar
  51. 51.
    Han W, Schulten K (2013) Characterization of folding mechanisms of Trp-cage and WW-domain by network analysis of simulations with a hybrid-resolution model. J Phys Chem B 117(42):13367–13377. doi: 10.1021/jp404331d CrossRefGoogle Scholar
  52. 52.
    Han W, Schulten K (2014) Fibril elongation by Abeta(17–42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. J Am Chem Soc 136(35):12450–12460. doi: 10.1021/ja507002p CrossRefGoogle Scholar
  53. 53.
    Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115CrossRefGoogle Scholar
  54. 54.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi: 10.1002/jcc.20289 CrossRefGoogle Scholar
  55. 55.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  56. 56.
    Glykos NM (2006) Software news and updates. Carma: a molecular dynamics analysis program. J Comput Chem 27(14):1765–1768. doi: 10.1002/jcc.20482 CrossRefGoogle Scholar
  57. 57.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. doi: 10.1002/bip.360221211 CrossRefGoogle Scholar
  58. 58.
    Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56CrossRefGoogle Scholar
  59. 59.
    Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16(6):566–567CrossRefGoogle Scholar
  60. 60.
    Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:545–549. doi: 10.1093/nar/gkq366 CrossRefGoogle Scholar
  61. 61.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San CarlosGoogle Scholar
  62. 62.
    Andrade MA, Perez-Iratxeta C, Ponting CP (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134(2–3):117–131. doi: 10.1006/jsbi.2001.4392 CrossRefGoogle Scholar
  63. 63.
    Jenkins J, Pickersgill R (2001) The architecture of parallel beta-helices and related folds. Prog Biophys Mol Biol 77(2):111–175CrossRefGoogle Scholar
  64. 64.
    Collinson SK, Parker JM, Hodges RS, Kay WW (1999) Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290(3):741–756. doi: 10.1006/jmbi.1999.2882 CrossRefGoogle Scholar
  65. 65.
    Baxa U, Cassese T, Kajava AV, Steven AC (2006) Structure, function, and amyloidogenesis of fungal prions: filament polymorphism and prion variants. Adv Protein Chem 73:125–180. doi: 10.1016/S0065-3233(06)73005-4 CrossRefGoogle Scholar
  66. 66.
    Choi JH, May BC, Wille H, Cohen FE (2009) Molecular modeling of the misfolded insulin subunit and amyloid fibril. Biophys J 97(12):3187–3195. doi: 10.1016/j.bpj.2009.09.042 CrossRefGoogle Scholar
  67. 67.
    Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526. doi: 10.1126/science.1151839 CrossRefGoogle Scholar
  68. 68.
    Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23(11):1528–1539. doi: 10.1002/pro.2544 CrossRefGoogle Scholar
  69. 69.
    Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99(5):2754–2759. doi: 10.1073/pnas.052706099 CrossRefGoogle Scholar
  70. 70.
    Bryan AW Jr, Starner-Kreinbrink JL, Hosur R, Clark PL, Berger B (2011) Structure-based prediction reveals capping motifs that inhibit beta-helix aggregation. Proc Natl Acad Sci USA 108(27):11099–11104. doi: 10.1073/pnas.1017504108 CrossRefGoogle Scholar
  71. 71.
    Harper DC, Theos AC, Herman KE, Tenza D, Raposo G, Marks MS (2008) Premelanosome amyloid-like fibrils are composed of only golgi-processed forms of Pmel17 that have been proteolytically processed in endosomes. J Biol Chem 283(4):2307–2322. doi: 10.1074/jbc.M708007200 CrossRefGoogle Scholar
  72. 72.
    Liou YC, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406(6793):322–324. doi: 10.1038/35018604 CrossRefGoogle Scholar
  73. 73.
    Shamsir MS, Dalby AR (2007) Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein. Biophys J 92(6):2080–2089. doi: 10.1529/biophysj.106.092320 CrossRefGoogle Scholar
  74. 74.
    Kini RM, Evans HJ (1995) A hypothetical structural role for proline residues in the flanking segments of protein–protein interaction sites. Biochem Biophys Res Commun 212(3):1115–1124. doi: 10.1006/bbrc.1995.2084 CrossRefGoogle Scholar
  75. 75.
    Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14(2):231–241Google Scholar
  76. 76.
    Thanka Christlet TH, Veluraja K (2001) Database analysis of O-glycosylation sites in proteins. Biophys J 80(2):952–960CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nikolaos N. Louros
    • 1
  • Fotis A. Baltoumas
    • 1
  • Stavros J. Hamodrakas
    • 1
  • Vassiliki A. Iconomidou
    • 1
    Email author
  1. 1.Department of Cell Biology and Biophysics, Faculty of BiologyUniversity of AthensAthensGreece

Personalised recommendations