Skip to main content

Advertisement

Log in

Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BACE-1:

β-Site APP cleaving enzyme

DFT:

Density functional theory

FEP:

Free energy perturbation

LBD:

Ligand binding domain

LBP:

Ligand binding pocket

LLE:

Lipophilic ligand efficiency

logD7.4 :

Logarithm of the distribution coefficient in octanol/water at pH 7.4

MDR:

Minimum discriminatory ratio

MR:

Mineralocorticoid receptor

QM:

Quantum mechanical

REST:

Replica exchange with solute tempering

SPA:

Scintillation proximity assay

References

  1. Fardella CE, Miller WL (1996) Molecular biology of mineralocorticoid metabolism. Annu Rev Nutr 16:443–470

    Article  CAS  Google Scholar 

  2. Struthers A, Krum H, Williams GH (2008) A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol 31:153–158

    Article  Google Scholar 

  3. Cranston WI, Juel-Jensen BE (1962) The effects of spironolactone and chlorthalidone on arterial pressure. Lancet 1:1161–1164

    Article  CAS  Google Scholar 

  4. Garthwaite SM, McMahon EG (2004) The evolution of aldosterone antagonists. Mol Cell Endocrinol 217:27–31

    Article  CAS  Google Scholar 

  5. Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH (2005) Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 28:2106–2112

    Article  CAS  Google Scholar 

  6. Sato A, Hayashi K, Naruse M, Saruta T (2003) Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 41:64–68

    Article  CAS  Google Scholar 

  7. Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, Parving HH (2006) Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 70:536–542

    CAS  Google Scholar 

  8. van den Meiracker AH, Baggen RG, Pauli S, Lindemans A, Vulto AG, Poldermans D, Boomsma F (2006) Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens 24:2285–2292

    Article  Google Scholar 

  9. Bertocchio J, Warnock DG, Jaisser F (2011) Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int 79:1051–1060

    Article  CAS  Google Scholar 

  10. Hasui T, Ohra T, Ohyabu N, Asano K, Matsui H, Mizukami A, Habuka N, Sogabe S, Endo S, Siedem CS, Tang TP, Gauthier C, De Meese LA, Boyd SA, Fukumoto S (2013) Design, synthesis, and structure-activity relationships of dihydrofuran-2-one and dihydropyrrol-2-one derivatives as novel benzoxazin-3-one-based mineralocorticoid receptor antagonists. Bioorg Med Chem 21:5983–5994

    Article  CAS  Google Scholar 

  11. Fagart J, Huyet J, Pinon GM, Rochel M, Mayer C, Rafestin-Oblin M (2005) Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Nat Struct Mol Biol 12:554–555

    Article  CAS  Google Scholar 

  12. Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP (2005) A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem 280:31283–31293

    Article  CAS  Google Scholar 

  13. Hasui T, Ohyabu N, Ohra T, Fuji K, Sugimoto T, Fujimoto J, Asano K, Oosawa M, Shiotani S, Nishigaki N, Kusumoto K, Matsui H, Mizukami A, Habuka N, Sogabe S, Endo S, Ono M, Siedem CS, Tang TP, Gauthier C, De Meese LA, Boyd SA, Fukumoto S (2014) Discovery of 6-5-(4-fluorophenyl)-3-methyl-pyrazol-4-yl]-benzoxazin-3-one derivatives as novel selective nonsteroidal mineralocorticoid receptor antagonists. Bioorg Med Chem 22:5428–5445

    Article  CAS  Google Scholar 

  14. Casimiro-Garcia A, Futatsugi K, Piotrowski DW (2011) Preparation of morpholine compounds as therapeutic mineralocorticoid receptor antagonists. WO2011141848A1

  15. Fukumoto S, Ohyabu N, Ohra T, Sugimoto T, Hasui T, Fuji K, Siedem CS, Gauthier C (2010) Preparation of pyrazole compounds as mineralocorticoid receptor antagonists. US20100094000A1

  16. Fukumoto S, Matsunaga N, Ohra T, Ohyabu N, Hasui T, Motoyaji T, Siedem CS, Tang TP, Demeese LA, Gauthier C (2007) Preparation of fused heterocycles as mineralocorticoid receptor antagonists. WO2007077961A2

  17. Michellys P, Petrassi HM, Richmond W, Pei W (2006) Compounds and compositions as modulators of steroid hormone nuclear receptors. WO2006015259

  18. Boyer SJ, Guo X, Wu D, Wu F (2012) Preparation of pyridyl ureas as mineralocorticoid receptor antagonists. WO2012064631A1

  19. Hasui T, Matsunaga N, Ora T, Ohyabu N, Nishigaki N, Imura Y, Igata Y, Matsui H, Motoyaji T, Tanaka T, Habuka N, Sogabe S, Ono M, Siedem CS, Tang TP, Gauthier C, De Meese LA, Boyd SA, Fukumoto S (2011) Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. J Med Chem 54:8616–8631

    Article  CAS  Google Scholar 

  20. Brelivet Y, Kammerer S, Rochel N, Poch O, Moras D (2004) Signature of the oligomeric behaviour of nuclear receptors at the sequence and structural level. EMBO Rep 5:423–429

    Article  CAS  Google Scholar 

  21. Piotrowski DW (2012) Mineralocorticoid receptor antagonists for the treatment of hypertension and diabetic nephropathy. J Med Chem 55:7957–7966

    Article  CAS  Google Scholar 

  22. Georgsson J, Bergström F, Nordqvist A, Watson MJ, Blundell CD, Johansson MJ, Petersson AU, Yuan Z, Zhou Y, Kristensson L, Kakol-Palm D, Tyrchan C, Wellner E, Bauer U, Brodin P, Svensson Henriksson A (2014) GPR103 antagonists demonstrating anorexigenic activity in vivo: design and development of pyrrolo[2,3-c]pyridines that mimic the C-terminal Arg-Phe Motif of QRFP26. J Med Chem 57:5935–5948

    Article  CAS  Google Scholar 

  23. Nordqvist A, Kristensson L, Johansson KE, Isaksson da Silva K, Fex T, Tyrchan C, Svensson Henriksson A, Nilsson K (2014) New hits as antagonists of GPR103 identified by HTS. ACS Med Chem Lett 5:527–532

    Article  CAS  Google Scholar 

  24. Hopkins AL, Keseru GM, Leeson PD, Rees DC, Reynolds CH (2014) The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13:105–121

    Article  CAS  Google Scholar 

  25. Head MS (2010) Docking: a domesday report. In: Merz KM Jr, Ringe D, Reynolds CH (eds) Drug design: structure- and ligand-based approaches. Cambridge University Press, New York, p 98

    Chapter  Google Scholar 

  26. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  Google Scholar 

  27. Barberot C, Boisson JC, Gerard S, Khartabil H, Thiriot E, Monard G, Henon E (2014) AlgoGen: a tool coupling a linear-scaling quantum method with a genetic algorithm for exploring non-covalent interactions. Comput Theor Chem 1028:7–18

    Article  CAS  Google Scholar 

  28. He X, Mei Y, Xiang Y, Zhang DW, Zhang JZH (2005) Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations. Proteins: Struct, Funct, Bioinf 61:423–432

    Article  CAS  Google Scholar 

  29. Jing Y, Han K (2010) Quantum mechanical effect in protein–ligand interaction. Expert Opin Drug Discov 5:33–49

    Article  CAS  Google Scholar 

  30. Lepsik M, Rezac J, Kolar M, Pecina A, Hobza P, Fanfrlik J (2013) The semiempirical quantum mechanical scoring function for in silico drug design. ChemPlusChem 78:921–931

    Article  CAS  Google Scholar 

  31. Rao L, Zhang IY, Guo W, Feng L, Meggers E, Xu X (2013) Nonfitting protein–ligand interaction scoring function based on first-principles theoretical chemistry methods: development and application on kinase inhibitors. J Comput Chem 34:1636–1646

    Article  CAS  Google Scholar 

  32. Soederhjelm P, Kongsted J, Ryde U (2010) Ligand affinities estimated by quantum chemical calculations. J Chem Theory Comput 6:1726–1737

    Article  CAS  Google Scholar 

  33. Yilmazer ND, Korth M (2015) Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 13:169–175

    Article  Google Scholar 

  34. Mucs D, Bryce RA (2013) The application of quantum mechanics in structure-based drug design. Expert Opin Drug Discov 8:263–276

    Article  CAS  Google Scholar 

  35. Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM Jr (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12:725–731

    Article  CAS  Google Scholar 

  36. Roos K, Viklund J, Meuller J, Kaspersson K, Svensson M (2014) Potency prediction of β-secretase (BACE-1) inhibitors using density functional methods. J Chem Inf Model 54:818–825

    Article  CAS  Google Scholar 

  37. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities. Proc Natl Acad Sci USA 109:1937–1942

    Article  CAS  Google Scholar 

  38. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput-Aided Mol Des 27:221–234

    Article  CAS  Google Scholar 

  39. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  40. Protein Preparation Wizard 2014-2; Epik version 2.4, Impact version 5.9, Prime 3.2 (2014) Schrödinger, LLC, New York

  41. Schrödinger Release 2013-1: MacroModel 10.0 (2013) Schrödinger, LLC, New York

  42. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  43. Glide 6.3 (2014) Schrödinger, LLC, New York

  44. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  45. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  46. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142

    Article  CAS  Google Scholar 

  47. Jaguar 8.2 (2013) Schrödinger, LLC, New York

  48. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  49. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges. J Chem Theory Comput 3:2011–2033

    Article  CAS  Google Scholar 

  50. Olson RM, Marenich AV, Cramer CJ, Truhlar DG (2007) Charge model 4 and intramolecular charge polarization. J Chem Theory Comput 3:2046–2054

    Article  CAS  Google Scholar 

  51. Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651

    Article  CAS  Google Scholar 

  52. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  53. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  54. Desmond Molecular Dynamics System 4.1 (2015) D. E. Shaw Research, New York

  55. Maestro-Desmond Interoperability Tools 4.1 (2015) Schrödinger, LLC, New York

  56. Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R (2013) Modeling local structural rearrangements using FEP/REST: application to relative binding affinity predictions of CDK2 inhibitors. J Chem Theory Comput 9:1282–1293

    Article  CAS  Google Scholar 

  57. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  Google Scholar 

  58. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890

    Article  CAS  Google Scholar 

  59. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002

    Article  CAS  Google Scholar 

  60. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10:197–208

    Article  CAS  Google Scholar 

  61. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54:1717–1736

    Article  CAS  Google Scholar 

  62. Warren GL, Andrews CW, Capelli A, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  Google Scholar 

  63. Ruben AJ, Kiso Y, Freire E (2006) Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem Biol Drug Des 67:2–4

    Article  CAS  Google Scholar 

  64. Shamovsky I, de Graaf C, Alderin L, Bengtsson M, Bladh H, Borjesson L, Connolly S, Dyke HJ, van den Heuvel M, Johansson H, Josefsson B, Kristoffersson A, Linnanen T, Lisius A, Mannikko R, Norden B, Price S, Ripa L, Rognan D, Rosendahl A, Skrinjar M, Urbahns K (2009) Increasing selectivity of CC chemokine receptor 8 antagonists by engineering nondesolvation related interactions with the intended and off-target binding sites. J Med Chem 52:7706–7723

    Article  CAS  Google Scholar 

  65. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  CAS  Google Scholar 

  66. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  67. OPLS 2.1 (2014) Schrödinger, LLC, New York

  68. Warren GL, Do TD, Kelley BP, Nicholls A, Warren SD (2012) Essential considerations for using protein–ligand structures in drug discovery. Drug Discov Today 17:1270–1281

    Article  CAS  Google Scholar 

  69. Deller M, Rupp B (2015) Models of protein–ligand crystal structures: trust, but verify. J Comput Aided Mol Des 29:1–20

  70. Guha R, Van Drie JH (2008) Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658

    Article  CAS  Google Scholar 

  71. Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, Bravi G, Richmond NJ, Pickett SD, Hussain J, Pritchard JM, Cooper AWJ, MacDonald SJF (2010) Lead optimization using matched molecular pairs: inclusion of contextual information for enhanced prediction of hERG inhibition, solubility, and lipophilicity. J Chem Inf Model 50:1872–1886

    Article  CAS  Google Scholar 

  72. Kubinyi H (1997) QSAR and 3D QSAR in drug design. Part 1: Methodology. Drug Discov Today 2:457–467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank DMPK for logD7.4 profiling of the compounds, Marianne Wedin and Ulla Karlsson for performing MR binding assay experiments. We also thank Mats Svensson for valuable discussions and scientific input.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katarina Roos or Anneli Nordqvist.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos, K., Hogner, A., Ogg, D. et al. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods. J Comput Aided Mol Des 29, 1109–1122 (2015). https://doi.org/10.1007/s10822-015-9880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9880-1

Keywords

Navigation