Journal of Computer-Aided Molecular Design

, Volume 29, Issue 10, pp 951–961 | Cite as

A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation



S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

Graphical Abstract

A S-Adenosylmethionine force field was developed together with Dynamic Hirshfeld-I charges (shown color coded in figure) and validated against various experimental data.


Adenosylmethionine Force field Atomic charges 



EVM is thankful for funding support provided by FONDECYT 11121179 and Grant ICM No 120082. DS thanks CONICYT for the graduate scholarship 21130517.

Supplementary material

10822_2015_9864_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2644 kb)
10822_2015_9864_MOESM2_ESM.pdb (28 kb)
Supplementary material 2 (PDB 28 kb)
10822_2015_9864_MOESM3_ESM.itp (35 kb)
Supplementary material 3 (ITP 35 kb)


  1. 1.
    Cantoni GL (1975) Annu Rev Biochem 44:435CrossRefGoogle Scholar
  2. 2.
    Ravanel S, Gakière B, Job D, Douce R (1998) Proc Natl Acad Sci USA 95:7805CrossRefGoogle Scholar
  3. 3.
    Jones PA, Takai D (2001) Science 293:1068CrossRefGoogle Scholar
  4. 4.
    Stock JB, Surette MG, McCleary WR, Stock AM (1992) J Biol Chem 267:19753Google Scholar
  5. 5.
    Berger SL (2001) Science 292:64Google Scholar
  6. 6.
    Frey PA, Magnusson OT et al (2003) Chem Rev 103:2129–2148CrossRefGoogle Scholar
  7. 7.
    Frey PA (2001) Annu Rev Biochem 70:121CrossRefGoogle Scholar
  8. 8.
    Cantoni GL (1952) J Am Chem Soc 74:2942CrossRefGoogle Scholar
  9. 9.
    Parks LW, Schlenk F et al (1958) J Biol Chem 230:295Google Scholar
  10. 10.
    Borchardt RT (1979) J Am Chem Soc 101:458CrossRefGoogle Scholar
  11. 11.
    Follmann H, Kuntz I, Zacharias W (1975) Eur J Biochem 58:31CrossRefGoogle Scholar
  12. 12.
    Follmann H, Gremels G (1974) Eur J Biochem 47:187CrossRefGoogle Scholar
  13. 13.
    Klee WA, Mudd SH (1967) Biochemistry 6:988CrossRefGoogle Scholar
  14. 14.
    Stolowitz ML, Minch MJ (1981) J Am Chem Soc 103:6017CrossRefGoogle Scholar
  15. 15.
    Markham GD, Norrby P-O, Bock CW (2002) Biochemistry 41:7636CrossRefGoogle Scholar
  16. 16.
    Hu P, Wang S, Zhang Y (2008) J Am Chem Soc 130:3806CrossRefGoogle Scholar
  17. 17.
    Stacklies W, Xia F, Gräter F (2009) PLoS Comput Biol 5:e1000574CrossRefGoogle Scholar
  18. 18.
    Huang W, Kim J, Jha S, Aboul-ela F (2009) Nucleic acids res 37:6528CrossRefGoogle Scholar
  19. 19.
    Whitford PC, Schug A, Saunders J, Hennelly SP, Onuchic JN, Sanbonmatsu KY (2009) Biophys J 96:L7CrossRefGoogle Scholar
  20. 20.
    Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049CrossRefGoogle Scholar
  21. 21.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03, Revision E. 01. Gaussian, Inc., WallingfordGoogle Scholar
  23. 23.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269CrossRefGoogle Scholar
  24. 24.
    Dupradeau F-Y, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) Phys chem chem phys 12:7821CrossRefGoogle Scholar
  25. 25.
    Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111CrossRefGoogle Scholar
  26. 26.
    Hirshfeld FL (1977) Theoretical chemistry accounts: theory, computation, and modeling. Theor Chim Acta 44:129CrossRefGoogle Scholar
  27. 27.
    Van Damme S, Bultinck P, Fias S (2009) J Chem Theory Comput 5:334CrossRefGoogle Scholar
  28. 28.
    Verstraelen T HORTON 1.2.1Google Scholar
  29. 29.
    Vöhringer-Martinez E, Verstraelen T, Ayers PW (2014) J Phys Chem B 118:9871CrossRefGoogle Scholar
  30. 30.
    Perone CS (2009) ACM SIGEVOlution 4:12CrossRefGoogle Scholar
  31. 31.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J ChemTheory Comput 4:435Google Scholar
  32. 32.
    Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101CrossRefGoogle Scholar
  33. 33.
    Hess B, Bekker H, Berendsen H, Fraaije J (1997) J Comput Chem 18:1463CrossRefGoogle Scholar
  34. 34.
    Berendsen H, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269CrossRefGoogle Scholar
  35. 35.
    Tsai ML, Cronin N, Djordjevic S (2011) Acta Crystallogr Sect D 67:14CrossRefGoogle Scholar
  36. 36.
    Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y (2003) EMBO J. 22:292CrossRefGoogle Scholar
  37. 37.
    Lai C-W, Chen H-L, Lin K-Y, Liu F-C, Chong K-Y, Cheng WTK, Chen C-M (2014) PLoS ONE 9:e90818CrossRefGoogle Scholar
  38. 38.
    Daura X, Antes I, van Gunsteren WF (1999) Proteins: StructureGoogle Scholar
  39. 39.
    Burgi R, Pitera J, van Gunsteren WF (2001) J Biomol NMR 19:305CrossRefGoogle Scholar
  40. 40.
    Zagrovic B, van Gunsteren WF (2006) Proteins 63:210CrossRefGoogle Scholar
  41. 41.
    Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH (2010) J Chem Theory Comput 6:1520CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Adrian Saez
    • 1
  • Esteban Vöhringer-Martinez
    • 1
  1. 1.Departamento de Físico Química, Facultad de Ciencias QuímicasUniversidad de Concepción, Milenium Nucleus Chemical Processes and CatalysisConcepciónChile

Personalised recommendations