Journal of Computer-Aided Molecular Design

, Volume 29, Issue 4, pp 305–314 | Cite as

Introducing the ‘active search’ method for iterative virtual screening

  • Roman Garnett
  • Thomas Gärtner
  • Martin Vogt
  • Jürgen Bajorath
Article

Abstract

A method is introduced for sequential similarity searching for active compounds. Given a set of known actives and a screening database, a strategy is devised to optimally rank test compounds by observing the outcome of each iteration before selecting the next compound. This ‘active search’ approach is based upon Bayesian decision theory. A typical ranking procedure used in virtual compound screening corresponds to a myopic approximation to the optimal strategy. Exploratory active search represents a less-myopic approach and is shown to accurately identify a variety of active compounds in iterative virtual screening trials on 120 compound classes. Source code and data for the active search approach presented herein is made freely available.

Keywords

Active search Iterative virtual screening Bayesian decision theory 

References

  1. 1.
    Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216CrossRefGoogle Scholar
  2. 2.
    Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204CrossRefGoogle Scholar
  3. 3.
    Stumpfe D, Bajorath J (2011) Similarity searching. Wiley Interdiscip Rev Comput Mol Sci 1:260–282CrossRefGoogle Scholar
  4. 4.
    Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894CrossRefGoogle Scholar
  5. 5.
    Stahura F, Bajorath J (2004) Virtual screening methods that complement HTS. CCHTS 7:259–269CrossRefGoogle Scholar
  6. 6.
    Garnett R, Krishnamurthy Y, Xiong X, Schneider J, Mann RP (2012) Bayesian optimal active search and surveying. In: Langford J (ed) Proceedings of the 29th international conference on machine learning (ICML 2012). Pineau J, pp 1239–1246Google Scholar
  7. 7.
    Robert C (2007) The Bayesian choice. Springer, New YorkGoogle Scholar
  8. 8.
    Garnett R Active Search Toolbox for MATLAB. https://github.com/rmgarnett/active_search
  9. 9.
    Willett P (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996CrossRefGoogle Scholar
  10. 10.
    Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Comput Sci 44:1177–1185CrossRefGoogle Scholar
  11. 11.
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Bindingdb: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201CrossRefGoogle Scholar
  12. 12.
    Heikamp K, Bajorath J (2011) How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. J Chem Inf Model 51:2254–2265CrossRefGoogle Scholar
  13. 13.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768CrossRefGoogle Scholar
  14. 14.
    Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754CrossRefGoogle Scholar
  15. 15.
    Molecular Operating Environment (MOE) (2012) Chemical Computing Group, Montreal, CanadaGoogle Scholar
  16. 16.
    MACCS Structural Keys (2011) Accelrys, San Diego, CAGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roman Garnett
    • 1
  • Thomas Gärtner
    • 1
    • 2
  • Martin Vogt
    • 3
  • Jürgen Bajorath
    • 3
  1. 1.Institute of Computer Science IIIRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems IAISSankt AugustinGermany
  3. 3.Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics, B-IT, LIMESRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations