Journal of Computer-Aided Molecular Design

, Volume 29, Issue 1, pp 13–21 | Cite as

Binding energy calculations for hevein–carbohydrate interactions using expanded ensemble molecular dynamics simulations

  • Chaitanya A. K. Koppisetty
  • Martin Frank
  • Alexander P. Lyubartsev
  • Per-Georg NyholmEmail author


Accurate estimation of protein–carbohydrate binding energies using computational methods is a challenging task. Here we report the use of expanded ensemble molecular dynamics (EEMD) simulation with double decoupling for estimation of binding energies of hevein, a plant lectin with its monosaccharide and disaccharide ligands GlcNAc and (GlcNAc)2, respectively. In addition to the binding energies, enthalpy and entropy components of the binding energy are also calculated. The estimated binding energies for the hevein–carbohydrate interactions are within the range of ±0.5 kcal of the previously reported experimental binding data. For comparison, binding energies were also estimated using thermodynamic integration, molecular dynamics end point calculations (MM/GBSA) and the expanded ensemble methodology is seen to be more accurate. To our knowledge, the method of EEMD simulations has not been previously reported for estimating biomolecular binding energies.


Binding energies Expanded ensemble molecular dynamics Carbohydrates Docking 



The authors thank Prof. Graham J. L. Kemp at the Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden for valuable suggestions and comments on the manuscript. The computational resources at C3SE ( provided by the Swedish National Infrastructure for Computing (SNIC) are gratefully acknowledged. Financial support from Biognos AB is gratefully acknowledged.


  1. 1.
    Boller T, He SY (2009) Science 324(5928):742CrossRefGoogle Scholar
  2. 2.
    Zipfel C (2008) Curr Opin Immunol 20(1):10CrossRefGoogle Scholar
  3. 3.
    Jimenez-Barbero J, Canada FJ, Asensio JL, Aboitiz N, Vidal P, Canales A, Groves P, Gabius HJ, Siebert HC (2006) Adv Carbohydr Chem Biochem 60:303CrossRefGoogle Scholar
  4. 4.
    Asensio JL, Canada FJ, Siebert HC, Laynez J, Poveda A, Nieto PM, Soedjanaamadja UM, Gabius HJ, Jimenez-Barbero J (2000) Chem Biol 7(7):529CrossRefGoogle Scholar
  5. 5.
    Bryce RA, Hillier IH, Naismith JH (2001) Biophys J 81(3):1373CrossRefGoogle Scholar
  6. 6.
    Laederach A, Reilly PJ (2003) J Comput Chem 24(14):1748CrossRefGoogle Scholar
  7. 7.
    Kerzmann A, Neumann D, Kohlbacher O (2006) J Chem Inf Model 46(4):1635CrossRefGoogle Scholar
  8. 8.
    Hill AD, Reilly PJ (2008) J Comput Chem 29(7):1131CrossRefGoogle Scholar
  9. 9.
    Toone EJ (1994) Curr Opin Struct Biol 4(5):719CrossRefGoogle Scholar
  10. 10.
    Shivakumar DM, Graves AP, Boyce S, Case DA, Shoichet BK (2008) Abstracts of Papers of the American Chemical Society 236Google Scholar
  11. 11.
    Shivakumar DM, Case DA (2006) Abstracts of Papers of the American Chemical Society 232: 107Google Scholar
  12. 12.
    Archontis G, Simonson T, Karplus M (2001) J Mol Biol 306(2):307CrossRefGoogle Scholar
  13. 13.
    Marelius J, Hansson T, Aqvist J (1998) Int J Quantum Chem 69(1):77CrossRefGoogle Scholar
  14. 14.
    Lyubartsev AP, Forrisdahl OK, Laaksonen A (1998) J Chem Phys 108(1):227CrossRefGoogle Scholar
  15. 15.
    Lyubartsev AP, Laaksonen A, Vorontsovvelyaminov PN (1994) Mol Phys 82(3):455CrossRefGoogle Scholar
  16. 16.
    Aberg KM, Lyubartsev AP, Jacobsson SP, Laaksonen A (2004) J Chem Phys 120(8):3770CrossRefGoogle Scholar
  17. 17.
    Fajer M, Hamelberg D, McCammon JA (2008) J Chem Theory Comput 4(10):1565CrossRefGoogle Scholar
  18. 18.
    Straatsma TP, Berendsen HJC (1988) J Chem Phys 89(9):5876CrossRefGoogle Scholar
  19. 19.
    Wang FG, Landau DP (2001) Phys Rev Lett 86(10):2050CrossRefGoogle Scholar
  20. 20.
    Jambeck JPM, Mocci F, Lyubartsev AP, Laaksonen A (2013) J Comput Chem 34(3):187CrossRefGoogle Scholar
  21. 21.
    Hamelberg D, McCammon JA (2004) Abstracts of Papers of the American Chemical Society 227: U1007Google Scholar
  22. 22.
    Conformational Analysis Tools <>. Accessed
  23. 23.
    Kirkwood JG (1935) J Chem Phys 3(5):300CrossRefGoogle Scholar
  24. 24.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785CrossRefGoogle Scholar
  25. 25.
    Bennaim A, Marcus Y (1984) J Chem Phys 81(4):2016CrossRefGoogle Scholar
  26. 26.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinform 65(3):712CrossRefGoogle Scholar
  27. 27.
    Deng NJ, Zhang P, Cieplak P, Lai LH (2011) J Phys Chem B 115(41):11902CrossRefGoogle Scholar
  28. 28.
    Singh N, Warshel A (2010) Proteins Struct Funct Bioinform 78(7):1705Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chaitanya A. K. Koppisetty
    • 1
    • 2
  • Martin Frank
    • 1
  • Alexander P. Lyubartsev
    • 3
  • Per-Georg Nyholm
    • 1
    • 4
    Email author
  1. 1.Biognos ABGothenburgSweden
  2. 2.Department of Computer Science and EngineeringChalmers University of TechnologyGothenburgSweden
  3. 3.Arrhenius Laboratory, Division of Physical ChemistryStockholm UniversityStockholmSweden
  4. 4.Department of Medical Biochemistry, Institute of BiomedicineUniversity of GothenburgGothenburgSweden

Personalised recommendations