Journal of Computer-Aided Molecular Design

, Volume 28, Issue 5, pp 549–564 | Cite as

QSPR ensemble modelling of the 1:1 and 1:2 complexation of Co2+, Ni2+, and Cu2+ with organic ligands: relationships between stability constants

  • Vitaly Solov’ev
  • Alexandre Varnek
  • Aslan Tsivadze


Quantitative structure–property relationship (QSPR) modeling of stability constants for the metal:ligand ratio 1:1 (logK) and 1:2 (logβ 2) complexes of 3 transition metal ions with diverse organic ligands in aqueous solution was performed using ensemble multiple linear regression analysis and substructural molecular fragment descriptors. The modeling was performed on the sets containing 396 and 132 (Co2+), 613 and 233 (Ni2+), 883 and 257 (Cu2+) logK and logβ 2 values, respectively. The models have been validated in external fivefold cross-validations procedure as well as on the external test set containing new ligands recently reported in the literature. Predicted logK and logβ 2 values were calculated as arithmetic means of several hundred individual models (consensus models) using their applicability domains in averaging. The root mean squared error of predictions varies from 0.94 to 1.2 (logK) and from 1.2 to 1.4 (logβ 2) which is close to observed experimental systematic errors. Linear correlations between experimental logK values for pair of metal ions were evaluated. For all metal ions and ligands forming both 1:1 and 1:2 complexes the following ratio is observed: logβ 2/logK = 1.8 ± 0.1, n = 492.


QSPR modeling of stability constants Complexes of Co2+, Ni2+, and Cu2+ with organic ligands in water Multiple linear regression analysis, substructural molecular fragment descriptors Stability of complexes with different stoichiometry 



The authors thank Profs. G. Pettit and L. Pettit from Academic Software for providing with the SCDB-to-SDF program.

Supplementary material

10822_2014_9741_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)
10822_2014_9741_MOESM2_ESM.sdf (49 kb)
Supplementary material 2 (SDF 48 kb)
10822_2014_9741_MOESM3_ESM.sdf (136 kb)
Supplementary material 3 (SDF 135 kb)
10822_2014_9741_MOESM4_ESM.sdf (946 kb)
Supplementary material 4 (SDF 945 kb)
10822_2014_9741_MOESM5_ESM.sdf (282 kb)
Supplementary material 5 (SDF 282 kb)
10822_2014_9741_MOESM6_ESM.sdf (2.2 mb)
Supplementary material 6 (SDF 2271 kb)
10822_2014_9741_MOESM7_ESM.sdf (579 kb)
Supplementary material 7 (SDF 579 kb)
10822_2014_9741_MOESM8_ESM.sdf (1.5 mb)
Supplementary material 8 (SDF 1508 kb)
10822_2014_9741_MOESM9_ESM.sdf (504 kb)
Supplementary material 9 (SDF 503 kb)


  1. 1.
    McCleverty JA, Meyer TJ (eds) (2003) Comprehensive coordination chemistry II: from Biology to Nanotechnology. Applications of coordination chemistry, vol. 9. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Duca G (2012) Homogeneous catalysis with metal complexes: fundamentals and applications. Springer, BerlinGoogle Scholar
  3. 3.
    Kumar S, Dhar DN, Saxena PN (2009) Applications of metal complexes of Schiff bases—a review. J Sci Ind Res 68(March):181–187Google Scholar
  4. 4.
    Schühle DT, Peters JA, Schatz J (2011) Metal binding calixarenes with potential biomimetic and biomedical applications. Coord Chem Rev 255:2727–2745CrossRefGoogle Scholar
  5. 5.
    Mewis RE, Archibald SJ (2010) Biomedical applications of macrocyclic ligand complexes. Coord Chem Rev 254(15–16):1686–1712CrossRefGoogle Scholar
  6. 6.
    Delgado R, Felix V, Lima LMP, Price DW (2007) Metal complexes of cyclen and cyclam derivatives useful for medical applications: a discussion based on thermodynamic stability constants and structural data. Dalton Trans 26:2734–2745CrossRefGoogle Scholar
  7. 7.
    Anderegg G, Arnaud-Neu F, Delgado R, Felcman J, Popov K (2005) Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl Chem 77(8):1445–1495CrossRefGoogle Scholar
  8. 8.
    Que LJ, Tolman WB (eds) (2003) Comprehensive Coordination Chemistry II. Bio-coordination Chemistry, vol 8. Elsevier, San DiegoGoogle Scholar
  9. 9.
    Bhattacharya PK (2005) Metal ions in biochemistry. Alpha Scince International, HarrowGoogle Scholar
  10. 10.
    Sigel A, Sigel H (eds) (2000) Metal ions in biological systems. Manganese and its role in biological processes, vol 37. CRC Press, New YorkGoogle Scholar
  11. 11.
    Tretyakov YD, Martynenko LI, Grigoryev AN, Tsivadze AY (2001) Inorganic chemistry. Chemistry of elements. Book 1 (Rus). Himia, Moscow Google Scholar
  12. 12.
    Hancock RD (1997) Approaches to predicting stability constants: a critical review. Analyst 122(4):51R–58RCrossRefGoogle Scholar
  13. 13.
    Hancock RD, Martell AE (1989) Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev 89(8):1875–1914CrossRefGoogle Scholar
  14. 14.
    Martell AE, Hancock RD, Motekaitis RJ (1994) Factors affecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution. Coord Chem Rev 133(JUL):39–65CrossRefGoogle Scholar
  15. 15.
    Dimmock PW, Warwick P, Robbins RA (1995) Approaches to predicting stability constants. Analyst 120(8):2159–2170CrossRefGoogle Scholar
  16. 16.
    Popov KI, Wanner H (2005) Stability constants data sources: critical evaluation and application for environmental speciation. In: Nowack B, VanBriesen JM (eds) Biogeochemistry of chelating agents. ACS Symposium Series 910. American Chemical Society, Washington, pp 50–73CrossRefGoogle Scholar
  17. 17.
    Pattammattel A, Deshapriya IK, Chowdhury R, Kumar CV (2013) Metal-enzyme frameworks: role of metal ions in promoting enzyme self-assembly on α-zirconium(IV) phosphate nanoplates. Langmuir 29:2971–2981CrossRefGoogle Scholar
  18. 18.
    Daniele PG, Foti C, Gianguzza A, Prenesti E, Sammartano S (2008) Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord Chem Rev 252(1011):1093–1107CrossRefGoogle Scholar
  19. 19.
    Solov’ev VP, Varnek AA (2004) Structure–property modeling of metal binders using molecular fragments. Russ Chem Bull 53(7):1434–1445CrossRefGoogle Scholar
  20. 20.
    Toropov AA, Toropova AP, Nesterova AI, Nabiev OM (2004) QSPR modeling of complex stability by correlation weighing of the topological and chemical invariants of molecular graphs. Russ J Coord Chem 30(9):611–617CrossRefGoogle Scholar
  21. 21.
    Tetko IV, Solov’ev VP, Antonov AV, Yao XJ, Fan BT, Hoonakker F, Fourches D, Lachiche N, Varnek A (2006) Benchmarking of linear and non-linear approaches for quantitative structure–property relationship studies of metal complexation with organic ligands. J Chem Inf Model 46(2):808–819CrossRefGoogle Scholar
  22. 22.
    Svetlitski R, Lomaka A, Karelson M (2006) QSPR modelling of lanthanide-organic complex stability constants. Sep Sci Technol 41(1):197–216CrossRefGoogle Scholar
  23. 23.
    Solov’ev VP, Kireeva NV, Tsivadze AY, Varnek AA (2006) Structure–property modelling of complex formation of strontium with organic ligands in water. J Struct Chem 47(2):298–311CrossRefGoogle Scholar
  24. 24.
    Varnek A, Fourches D, Kireeva N, Klimchuk O, Marcou G, Tsivadze A, Solov’ev V (2008) Computer-aided design of new metal binders. Radiochim Acta 96(8):505–511Google Scholar
  25. 25.
    Cabaniss SE (2008) Quantitative structure–property relationships for predicting metal binding by organic ligands. Environ Sci Technol 42(14):5210–5216CrossRefGoogle Scholar
  26. 26.
    X-y Wang, H-l Wang (2008) QSPR study of crown ether complexes with K+ by density functional theory. Xiangtan Daxue Ziran Kexue Xuebao 30(3):86–93Google Scholar
  27. 27.
    Ghasemi J, Saaidpour S (2008) QSPR modeling of stability constants of diverse 15-crown-5 ethers complexes using best multiple linear regression. J Incl Phenom Macrocycl Chem 60(3–4):339–351CrossRefGoogle Scholar
  28. 28.
    Raos N, Miličević A (2009) Estimation of stability constants of coordination compounds using models based on topological indices. Arch Ind Hyg Toxicol 60(1):123–128Google Scholar
  29. 29.
    Ghasemi JB, Ahmadi S, Ayati M (2010) QSPR modeling of stability constants of the Li-hemispherands complexes using MLR: a theoretical host-guest study. Macroheterocycles 3(4):234–242Google Scholar
  30. 30.
    Ghasemi JB, Rofouei MK, Salahinejad M (2011) A quantitative structure–property relationships study of the stability constant of crown ethers by molecular modelling: new descriptors for lariat effect. J Incl Phenom Macrocycl Chem 70:37–47CrossRefGoogle Scholar
  31. 31.
    Li Y, Su L, Zhang X, Huang X, Zhai H (2011) Prediction of association constants of cesium chelates based on uniform design optimized support vector machine. Chemom Intell Lab Syst 105(1):106–113CrossRefGoogle Scholar
  32. 32.
    Mousavi A (2011) Predicting mercury(II) binding by organic ligands: a chemical model of therapeutic and environmental interests. Environ Forensic 12(4):327–332CrossRefGoogle Scholar
  33. 33.
    Garkani-Nejad Z, Ahmadvand M (2011) Simultaneous estimation of stability constants of Mg, Ba, Ca, and Sr complexes using a small subset of molecular descriptors. J Coord Chem 64(14):2466–2479CrossRefGoogle Scholar
  34. 34.
    Solov’ev V, Sukhno I, Buzko V, Polushin A, Marcou G, Tsivadze A, Varnek A (2012) Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. J Incl Phenom Macrocycl Chem 72(3–4):309–321CrossRefGoogle Scholar
  35. 35.
    Solov’ev VP, Tsivadze AY, Varnek AA (2012) New approach for accurate QSPR modeling of metal complexation: application to stability constants of complexes of lanthanide ions Ln3+, Ag+, Zn2+, Cd2+ and Hg2+ with organic ligands in water. Macroheterocycles 5(4–5):404–410CrossRefGoogle Scholar
  36. 36.
    Solov’ev V, Marcou G, Tsivadze AY, Varnek A (2012) Complexation of Mn2+, Fe2+, Y3+, La3+, Pb2+, and UO22+ with organic ligands: QSPR ensemble modeling of stability constants. Ind Eng Chem Res 51(41):13482–13489CrossRefGoogle Scholar
  37. 37.
    Ahmadi S (2012) Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J Incl Phenom Macrocycl Chem 74(1–4):57–66CrossRefGoogle Scholar
  38. 38.
    Daraei H, Irandoust M, Ghasemi JB, Kurdian AR (2012) QSPR probing of Na+ complexation with 15-crown-5 ethers derivatives using artificial neural network and multiple linear regression. J Incl Phenom Macrocycl Chem 72(3–4):423–435CrossRefGoogle Scholar
  39. 39.
    Mousavi A (2013) A chemical model for predicting zinc(II) binding by organic ligands as hypothetical therapeutic agents. Med Chem Res 22(1):234–239CrossRefGoogle Scholar
  40. 40.
    Solov’ev VP, Kireeva N, Tsivadze AY, Varnek A (2013) QSPR ensemble modelling of alkaline-earth metal complexation. J Incl Phenom Macrocycl Chem 76(1–2):159–171Google Scholar
  41. 41.
    Varnek A, Solov’ev V (2009) Quantitative structure–property relationships in solvent extraction and complexation of metals. In: Sengupta AK, Moyer BA (eds) Ion exchange and solvent extraction, a series of advances, vol 19., CRC PressTaylor and Francis Group, Boca Raton, pp 319–358CrossRefGoogle Scholar
  42. 42.
    Ghasemi JB, Salahinejad M, Rofouei MK (2011) Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol Chem 23(9):615–631Google Scholar
  43. 43.
    Buist D, Williams NJ, Reibenspies JH, Hancock RD (2010) Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2′-biimidazole. Inorg Chem 49(11):5033–5039CrossRefGoogle Scholar
  44. 44.
    Hardy JG (2013) Metallosupramolecular grid complexes: towards nanostructured materials with high-tech applications. Chem Soc Rev 42:7881–7899CrossRefGoogle Scholar
  45. 45.
    Schneider H-J (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977CrossRefGoogle Scholar
  46. 46.
    Carolan AN, Mroz AE, El Ojaimi M, VanDerveer DG, Thummel RP, Hancock RD (2012) Metal-ion-complexing properties of 2-(pyrid-2′-yl)-1,10-phenanthroline, a more preorganized analogue of terpyridyl. A crystallographic, fluorescence, and thermodynamic study. Inorg Chem 51(5):3007–3015CrossRefGoogle Scholar
  47. 47.
    Toropov AA, Toropova AP (2001) QSPR modeling of stability of complexes of adenosine phosphate derivatives with metals absent from the complexes of the teaching access. Russ J Coord Chem 27(8):574–578CrossRefGoogle Scholar
  48. 48.
    Toropov AA, Toropova AP (2002) QSPR modeling of complex stability by optimization of correlation weights of the hydrogen bond index and the local graph invariants. Russ J Coord Chem 28(12):877–880CrossRefGoogle Scholar
  49. 49.
    Grgas B, Nikolić S, Paulić N, Raos N (1999) Estimation of stability constants of copper(ii) chelates with N-alkylated amino acids using topological indices. Croat Chem Acta 72(4):885–895Google Scholar
  50. 50.
    Gorden AEV, Xu J, Raymond KN, Durbin P (2003) Rational design of sequestering agents for plutoniumand other actinides. Chem Rev 103(11):4207–4282CrossRefGoogle Scholar
  51. 51.
    Bianchi A, Calabi L, Corana F, Fontana S, Losi P, Maiocchi A, Paleari L, Valtancoli B (2000) Thermodynamic and structural properties of Gd(III) complexes with polyamino-polycarboxylic ligands: basic compounds for the development of MRI contrast agents. Coord Chem Rev 204:309–393CrossRefGoogle Scholar
  52. 52.
    IUPAC Stability Constants Database (2012) Academic Software. Accessed 26 Apr 2013
  53. 53.
    Solov’ev VP, Varnek AA (2008–2013) ISIDA (In silico design and data analysis) program. or Accessed 12 Dec 2013
  54. 54.
    Solov’ev VP, Varnek AA (1999–2013) EdChemS (Editor of chemical structures). or Accessed 12 Dec 2013
  55. 55.
    Solov’ev VP, Varnek AA (2013) EdiSDF (Editor of Structure—Data Files). or Accessed 12 Dec 2013
  56. 56.
    Varnek A, Fourches D, Hoonakker F, Solov’ev VP (2005) Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J Comput Aided Mol Des 19(9–10):693–703CrossRefGoogle Scholar
  57. 57.
    Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P, Solov’ev V, Hoonakker F, Tetko IV, Marcou G (2008) ISIDA-platform for virtual screening based on fragment and pharmacophoric descriptors. Curr Comput Aided Drug Des 4(3):191–198CrossRefGoogle Scholar
  58. 58.
    Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice Hall, Englewood CliffsGoogle Scholar
  59. 59.
    Forsythe GE, Malcolm MA, Moler CB (1977) Computer methods for mathematical computations. Prentice Hall, Englewood CliffsGoogle Scholar
  60. 60.
    Varnek A, Kireeva N, Tetko IV, Baskin II, Solov’ev VP (2007) Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J Chem Inf Model 47(3):1111–1122CrossRefGoogle Scholar
  61. 61.
    Horvath D, Bonachera F, Solov’ev V, Gaudin C, Varnek A (2007) Stochastic versus stepwise strategies for quantitative structure–activity relationship generation—how much effort may the mining for successful QSAR models take? J Chem Inf Model 47(3):927–939CrossRefGoogle Scholar
  62. 62.
    Varnek A, Solov’ev VP (2005) “In silico” design of potential anti-HIV actives using fragment descriptors. Comb Chem High Throughput Screen 8(5):403–416CrossRefGoogle Scholar
  63. 63.
    Muller PH, Neumann P, Storm R (1979) Tafeln der mathematischen Statistik. VEB Fachbuchverlag, LeipzipGoogle Scholar
  64. 64.
    Solov’ev VP, Varnek AA, Wipff G (2000) Modeling of ion complexation and extraction using substructural molecular fragments. J Chem Inf Comput Sci 40(3):847–858CrossRefGoogle Scholar
  65. 65.
    Solov’ev V, Oprisiu I, Marcou G, Varnek A (2011) Quantitative structure–property relationship (QSPR) modeling of normal boiling point temperature and composition of binary azeotropes. Ind Eng Chem Res 50(24):14162–14167CrossRefGoogle Scholar
  66. 66.
    Martell AE, Smith RM (1989) Critical stability constants, vol 1–6. Plenum Press, New YorkGoogle Scholar
  67. 67.
    Christensen JJ, Izatt RM (1983) Handbook of metal ligand heats and related thermodynamic quantities. Marcel Dekker Inc., New YorkGoogle Scholar
  68. 68.
    Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem Rev 91(8):1721–2085CrossRefGoogle Scholar
  69. 69.
    Solov’ev VP, Vnuk EA, Strakhova NN, Raevsky OA (1991) Thermodynamics of complexation of the macrocyclic polyethers with salts of alkali and alkaline-earth metals (Rus.). VINITI, MoscowGoogle Scholar
  70. 70.
    Sigel H, DaCosta CP, Song B, Carloni P, Gregan F (1999) Stability and structure of metal ion complexes formed in solution with acetyl phosphate and acetonylphosphonate: quantification of isomeric equilibria. J Am Chem Soc 121(26):6248–6257CrossRefGoogle Scholar
  71. 71.
    Fernandez-Botello A, Griesser R, Holy A, Moreno V, Sigel H (2005) Acid-base and metal-ion-binding properties of 9-[2-(2-Phosphonoethoxy)ethyl]adenine (PEEA), a relative of the antiviral nucleotide analogue 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). An exercise on the quantification of isomeric complex equilibria in solution. Inorg Chem 44(14):5104–5117CrossRefGoogle Scholar
  72. 72.
    Gephart RT III, Williams NJ, Reibenspies JH, De Sousa AS, Hancock RD (2008) Metal ion complexing properties of the highly preorganized LIGAND 2,9-bis(Hydroxymethyl)-1,10-phenanthroline: a crystallographic and thermodynamic study. Inorg Chem 47(22):10342–10348CrossRefGoogle Scholar
  73. 73.
    Hancock RD, de Sousa AS, Walton GB, Reibenspies JH (2007) Metal-ion selectivity produced by C-alkyl substituents on the bridges of chelating ligands: the importance of short H–H nonbonded van der Waals Contacts in controlling metal-ion selectivity. A Thermodynamic, molecular mechanics, and crystallographic study. Inorg Chem 46(11):4749–4757CrossRefGoogle Scholar
  74. 74.
    Kotek J, Kálmán FK, Hermann P, Brücher E, Binnemans K, Lukeš I (2006) Study of thermodynamic and kinetic stability of transition metal and lanthanide complexes of DTPA analogues with a phosphorus acid pendant arm. Eur J Inorg Chem 2006(10):1976–1986 Google Scholar
  75. 75.
    Kálmán FK, Baranyai Z, Tóth I, Bányai I, Király R, Brücher E, Aime S, Sun X, Sherry AD, Kovács Z (2008) Synthesis, potentiometric, kinetic, and NMR studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) Ions. Inorg Chem 47(9):3851–3862CrossRefGoogle Scholar
  76. 76.
    Nagy NV, Van Doorslaer S, Szabó-Plánka T, Van Rompaey S, Hamza A, Fülöp F, Tóth GK, Rockenbauer A (2012) Copper(II)-binding ability of stereoisomeric cis- and trans-2-aminocyclohexanecarboxylic acid-L-phenylalanine dipeptides. A combined CW/pulsed EPR and DFT study. Inorg Chem 51(3):1386–1399CrossRefGoogle Scholar
  77. 77.
    Varnek A, Fourches D, Solov’ev VP, Baulin VE, Turanov AN, Karandashev VK, Fara D, Katritzky AR (2004) “In silico” Design of new uranyl extractants based on phosphoryl-containing podands: QSPR Studies, generation and screening of virtual combinatorial library, and experimental tests. J Chem Inf Comput Sci 44(4):1365–1382CrossRefGoogle Scholar
  78. 78.
    Weissbuch I, Baxter PNW, Cohen S, Cohen H, Kjær K, Howes PB, Als-Nielsen J, Hanan GS, Schubert US, Lehn JM, Leiserowitz L, Lahav M (1998) Self-assembly at the air-water interface. In-situ preparation of thin films of metal ion grid architectures. J Am Chem Soc 120(19):4850–4860CrossRefGoogle Scholar
  79. 79.
    Breuning E, Ziener U, Lehn J-M, Wegelius E, Rissanen K (2001) Two-level self-organisation of arrays of [2 × 2] grid-type tetranuclear metal complexes by hydrogen bonding. Eur J Inorg Chem 6:1515–1521CrossRefGoogle Scholar
  80. 80.
    Bark T, Düggeli M, Stoeckli-Evans H, von Zelewsky A (2001) Designed molecules for self-assembly: the controlled formation of two chiral self-assembled polynuclear species with predetermined configuration. Angew Chem Int Ed 40(15):2848–2851CrossRefGoogle Scholar
  81. 81.
    Israeli M, Pettit LD (1975) Complex formation between unsaturated α-aminoacids and silver(I) and some divalent transition metal ions. J Inorg Nucl Chem 37(4):999–1003CrossRefGoogle Scholar
  82. 82.
    Khalil MM, Attia AE (2000) Potentiometric studies on the formation equilibria of binary and ternary complexes of some metal ions with dipicolinic acid and amino acids. J Chem Eng Data 45(6):1108–1111CrossRefGoogle Scholar
  83. 83.
    Motekaitis RJ, Murase I, Martell AE (1971) New multidentate ligands—XI: synthesis and chelating tendencies of ethylenediamine-N, N′-di(methylenephosphinic) acid, ethylenediamine-N, N, N′, N′-tetra(methylenephosphinic) acid and ethylenediamine-N, N′-di(methylenephosphonic) acid. J Inorg Nucl Chem 33(10):3353–3365CrossRefGoogle Scholar
  84. 84.
    Markhaeva VP, Nikolaeva LS, Ditze F, Baier L, Parshikova EA, Golskikh VA, Bodoev NV (2001) The study of the complexation of 1,2-diaminoethane-N, N’-bis(methylenephosphonic) acid with Ni2+ and Co2+ cations. Zh Neorg Khim (Rus) 46(1):85–91Google Scholar
  85. 85.
    Sovago I, Kiss T, Gergely A (1993) Critical survey of the stability constants of complexes of aliphatic amino acids. Pure Appl Chem 65(5):1029–1080CrossRefGoogle Scholar
  86. 86.
    Ismail NM (1997) Potentiometric studies on ternary metal complexes of some aliphatic acids and aminoacids. J Indian Chem Soc 74(5):396–398Google Scholar
  87. 87.
    Boraei AAA, Mohamed NFA (2002) Equilibrium studies of ternary systems involving divalent transition metal ions, aliphatic acids, and triazoles. J Chem Eng Data 47(4):987–991CrossRefGoogle Scholar
  88. 88.
    Smith RM, Martell AE, Chen Y (1991) Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and the accompanying enthalpy changes. Pure Appl Chern 63(7):1015–1080CrossRefGoogle Scholar
  89. 89.
    Boraei AAA, Taha F, Mohamed AH, Ibrahim SA (2001) Medium effect and thermodynamic studies for the proton-ligand and metal-ligand formation constants of the ternary systems MII+ adenosine-5′-triphosphate (ATP)+ asparagine. J Chem Eng Data 46(2):267–275CrossRefGoogle Scholar
  90. 90.
    Khalil MM, Radalla AM (1998) Binary and ternary complexes of inosine. Talanta 46(1):53–61CrossRefGoogle Scholar
  91. 91.
    Azab HA, Hassan A, El-Nady AM, Azkal RSA (1993) Ternary complexes of nickel(II) with AMP, ADP and ATP as primary ligands and some biologically important polybasic oxygen acids as secondary ligands. Monatsh Chem 124(3):267–276CrossRefGoogle Scholar
  92. 92.
    Azab HA, Anwar ZM, Sokar M (2004) Metal ion complexes containing nucleobases and some zwitterionic buffers. J Chem Eng Data 49(1):62–72CrossRefGoogle Scholar
  93. 93.
    Khalil MM, Fazary AE (2004) Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh Chem 135(12):1455–1474CrossRefGoogle Scholar
  94. 94.
    Mulla F, Marsicano F, Nakani BS, Hancock RD (1985) Stability of ammonia complexes that are unstable to hydrolysis in water. Inorg Chem 24(19):3076–3080CrossRefGoogle Scholar
  95. 95.
    Zhadanov BV, Polyakova IA, Tsirul’nikova NV, Sushitskaya TM, Temkina VY (1979) Study of acid dissociation and complexing properties of imino-N, N-bis(methylenephosphonic acid). Koord Khim (Rus) 5:1614–1619Google Scholar
  96. 96.
    Patel RN, Shrivastava RP, Singh N, Pandeya KB (2001) Equilibrium study on the mixed ligand mixed metal complex formation stability of copper(II), nickel(II) and zinc(II) with glycylvaline and imidazole. Indian J Chem 40A(4):361–367Google Scholar
  97. 97.
    Mukherjee GN, Sahu HK (1998) Multimetal multiligand complexes. Part I. Equilibrium study on the formation and stability of mixed ligand mixed metal complexes of cobalt-, nickel-, copper- and zinc(Il) with aspartate and imidazole in aqueous solution. J Indian Chem Soc 75(3):143–147Google Scholar
  98. 98.
    Powell JE, Johnson DK (1969) Stability trends of some 1:1 and 2:1 malonato and 1,1-cyclobutanedicarboxylato cobalt, nickel, copper and zinc chelates. J Chromatogr 44:212–213CrossRefGoogle Scholar
  99. 99.
    Brookes G, Pettit LD (1977) Complex formation and stereoselectivity in the ternary systems copper(II)-D/L-histidine-L-amino-acids. J Chem Soc Dalton Trans 19:1918–1924CrossRefGoogle Scholar
  100. 100.
    Venkatnarayana G, Swamy S, Lingauah P (1988) Ternary complexes of copper(II) with malonic acid and O, O; O, N and N, N donor ligands. Indian J Chem 27A(7):613–616Google Scholar
  101. 101.
    Shoukry MM, Khairy EM, El-Sherif AA (2002) Ternary complexes involving copper(II) and amino acids, peptides and DNA constituents. The kinetics of hydrolysis of α-amino acid esters. Transition Met Chem 27(6):656–664CrossRefGoogle Scholar
  102. 102.
    Anwar ZM, Azab HA (1999) Ternary complexes in solution. Comparison of the coordination tendency of some biologically important zwitterionic buffers toward the binary complexes of some transition metal ions and some amino acids. J Chem Eng Data 44(6):1151–1157CrossRefGoogle Scholar
  103. 103.
    Coetzee CJ (1989) Determination of formation constants of copper(II) dicarboxylates with a solid state copper(II) ion-selective electrode. Polyhedron 8(9):1239–1242CrossRefGoogle Scholar
  104. 104.
    Arena G, Cali R, Rizzarelli E, Sammartano S, Barbucci R, Campbell MJM (1978) Thermodynamic and spectroscopic properties of mixed complexes in aqueous solution. Copper(II) complexes of 2,2-bipyridyl and dicarboxylic acids. J Chem Soc Dalton Trans 9:1090–1094CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vitaly Solov’ev
    • 1
  • Alexandre Varnek
    • 2
  • Aslan Tsivadze
    • 1
  1. 1.Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Laboratoire de Chemoinformatique, UMR 7140 CNRSUniversité de StrasbourgStrasbourgFrance

Personalised recommendations