Journal of Computer-Aided Molecular Design

, Volume 28, Issue 4, pp 363–373 | Cite as

Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4

  • Arnout R. D. Voet
  • Ashutosh Kumar
  • Francois Berenger
  • Kam Y. J. Zhang
Article

Abstract

The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.

Keywords

Virtual screening Molecular docking Pose prediction Pharmacophore modeling Electrostatic similarity EleKit Computer aided drug design 

References

  1. 1.
    Heikamp K, Bajorath J (2013) The future of virtual compound screening. Chem Biol Drug Des 81(1):33–40CrossRefGoogle Scholar
  2. 2.
    Lill M (2013) Virtual screening in drug design. Methods Mol Biol 993:1–12CrossRefGoogle Scholar
  3. 3.
    Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279CrossRefGoogle Scholar
  4. 4.
    Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507CrossRefGoogle Scholar
  5. 5.
    Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779CrossRefGoogle Scholar
  6. 6.
    Skillman AG (2012) SAMPL3: blinded prediction of host-guest binding affinities, hydration free energies, and trypsin inhibitors. J Comput Aided Mol Des 26(5):473–474CrossRefGoogle Scholar
  7. 7.
    Voet AR, Maeyer MD, Debyser Z, Christ F (2009) In search of second-generation HIV integrase inhibitors: targeting integration beyond strand transfer. Future Med Chem 1(7):1259–1274CrossRefGoogle Scholar
  8. 8.
    Peat TS, Rhodes DI, Vandegraaff N, Le G, Smith JA, Clark LJ, Jones ED, Coates JA, Thienthong N, Newman J, Dolezal O, Mulder R, Ryan JH, Savage GP, Francis CL, Deadman JJ (2012) Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. PLoS ONE 7(7):e40147CrossRefGoogle Scholar
  9. 9.
    Busschots K, Voet A, De Maeyer M, Rain JC, Emiliani S, Benarous R, Desender L, Debyser Z, Christ F (2007) Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 365(5):1480–1492CrossRefGoogle Scholar
  10. 10.
    Hombrouck A, De Rijck J, Hendrix J, Vandekerckhove L, Voet A, De Maeyer M, Witvrouw M, Engelborghs Y, Christ F, Gijsbers R, Debyser Z (2007) Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 3(3):e47CrossRefGoogle Scholar
  11. 11.
    Cavalluzzo C, Christ F, Voet A, Sharma A, Singh BK, Zhang KY, Lescrinier E, De Maeyer M, Debyser Z, Van der Eycken E (2013) Identification of small peptides inhibiting the integrase-LEDGF/p75 interaction through targeting the cellular co-factor. J Pept Sci 19(10):651–658CrossRefGoogle Scholar
  12. 12.
    Cavalluzzo C, Voet A, Christ F, Singh BK, Sharma A, Debyser Z, Maeyer MD, Van der Eycken E (2012) De novo design of small molecule inhibitors targeting the LEDGF/p75-HIV integrase interaction. RSC Adv 2(3):974CrossRefGoogle Scholar
  13. 13.
    Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6(6):442–448CrossRefGoogle Scholar
  14. 14.
    Kumar A, Voet A, Zhang KY (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147CrossRefGoogle Scholar
  15. 15.
    Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Le G, Jones ED, Smith JA, Coates JA, Winfield LJ, Thienthong N, Newman J, Lucent D, Ryan JH, Savage GP, Francis CL, Deadman JJ (2011) Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antivir Chem Chemother 21(4):155–168CrossRefGoogle Scholar
  16. 16.
    Peat TS, Dolezal O, Newman J, Mobley D, Deadman JJ (2014) Interrogating HIV integrase for compounds that bind—a SAMPL challenge. J Comput Aided Mol Des (this issue)Google Scholar
  17. 17.
    Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102(48):17308–17313CrossRefGoogle Scholar
  18. 18.
    Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein–bound ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169CrossRefGoogle Scholar
  19. 19.
    OMEGA, version 2.4.6 OpenEye Scientific Software, Inc., Santa Fe, NM, USA. www.eyesopen.com, 2012
  20. 20.
    Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50(4):572–584CrossRefGoogle Scholar
  21. 21.
    Hawkins PC, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52(11):2919–2936CrossRefGoogle Scholar
  22. 22.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748CrossRefGoogle Scholar
  23. 23.
    Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2(5):317–324CrossRefGoogle Scholar
  24. 24.
    Molecular Operating Environment (MOE), version 2011.10; Chemical Computing Group Inc.: Montreal, Quebec, Canada, 2010Google Scholar
  25. 25.
    Voet A, Berenger F, Zhang KYJ (2013) Electrostatic similarities between protein and small molecule ligands facilitate the design of protein–protein interaction inhibitors. PLoS ONE 8(10):e75762CrossRefGoogle Scholar
  26. 26.
    Glide, version 5.7, Schrödinger, LLC, New York, NY, 2011Google Scholar
  27. 27.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749CrossRefGoogle Scholar
  28. 28.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49(21):6177–6196CrossRefGoogle Scholar
  29. 29.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759CrossRefGoogle Scholar
  30. 30.
    Maestro, version 9.2, Schrödinger, LLC, New York, NY, 2011Google Scholar
  31. 31.
    LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2011Google Scholar
  32. 32.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236CrossRefGoogle Scholar
  33. 33.
    Prime, version 3.0, Schrödinger, LLC, New York, NY, 2011Google Scholar
  34. 34.
    Bashford D, Case DA (2000) Generalized Born models of macromolecular solvation effects. Annu Rev Phys Chem 51(1):129–152CrossRefGoogle Scholar
  35. 35.
    Tsui V, Case DA (2000) Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56(4):275–291CrossRefGoogle Scholar
  36. 36.
    Velec HFG, Gohlke H, Klebe G (2005) DrugScoreCSD-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303CrossRefGoogle Scholar
  37. 37.
    The PyMOL Molecular Graphics System, version 1.5.0.4 Schrödinger, LLCGoogle Scholar
  38. 38.
    Williams T, Kelley C (2012) Gnuplot 4.6: an interactive plotting programGoogle Scholar
  39. 39.
    Fry DC (2012) Small-molecule inhibitors of protein–protein interactions: how to mimic a protein partner. Curr Pharm Des 18(30):4679–4684CrossRefGoogle Scholar
  40. 40.
    Voet A, Banwell EF, Sahu KK, Heddle JG, Zhang KY (2013) Protein interface pharmacophore mapping tools for small molecule protein: protein interaction inhibitor discovery. Curr Top Med Chem 13(9):989–1001CrossRefGoogle Scholar
  41. 41.
    Voet A, Zhang KY (2012) Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein–protein interaction inhibitors. Curr Pharm Des 18(30):4586–4598CrossRefGoogle Scholar
  42. 42.
    Mobley D, Liu S, Lim N, Deng N, Branson K, Perryman A, Forli S, Levy R, Gallicchio E, Olson A (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des (this issue)Google Scholar
  43. 43.
    Voet A, Callewaert L, Ulens T, Vanderkelen L, Vanherreweghe JM, Michiels CW, De Maeyer M (2011) Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochem Biophys Res Commun 405(4):527–532CrossRefGoogle Scholar
  44. 44.
    Voet A, Helsen C, Zhang KYJ, Claessens F (2013) The discovery of novel human androgen receptor antagonist chemotypes using a combined pharmacophore screening procedure. Chem Med Chem 8(4):644–651Google Scholar
  45. 45.
    Perryman AL, Santiago DN, Forli S, Olson AJ (2013) Virtual Screening with AutoDock Vina and the Common Pharmacophore Engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein–ligand binding challenge. J Comput Aided Mol Des. doi:10.1007/s1082201497093
  46. 46.
    Coleman RG, Sterling T, Weiss DR (2013) SAMPL4 & DOCK3.7: Lessons for automated docking procedures. J Comput Aided Mol Des (in press)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Arnout R. D. Voet
    • 1
  • Ashutosh Kumar
    • 1
  • Francois Berenger
    • 1
  • Kam Y. J. Zhang
    • 1
  1. 1.Zhang Initiative Research Unit, Institute LaboratoriesRIKENWakōJapan

Personalised recommendations