Journal of Computer-Aided Molecular Design

, Volume 27, Issue 8, pp 655–664 | Cite as

Automated molecule editing in molecular design

  • Peter W. Kenny
  • Carlos A. Montanari
  • Igor M. Prokopczyk
  • Fernanda A. Sala
  • Geraldo Rodrigues Sartori
Perspective

Abstract

The ability to modify chemical structures in an automated and controlled manner is useful in molecular design. This Perspective introduces the MUDO molecule editor and shows how automated molecule editing can be used to standardize structures, enumerate tautomeric and ionization states, identify matched molecular pairs. Unlike its predecessor Leatherface, MUDO can also process 3D structures and this capability can be used to link non-covalently docked ligands to proteins.

Keywords

Ionization Matched molecular pair Molecule editor SMIRKS Structure standardization Tautomer 

Notes

Acknowledgments

We are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Grant Numbers #2011/01893-3 and #2011/20572-3)) and the Conselho Nacional de Pesquisa (CNPq) for financial support. We thank OpenEye for an academic software license and the two anomymous reviewers for their helpful and constructive comments.

Supplementary material

10822_2013_9676_MOESM1_ESM.zip (72 kb)
Supplementary material 1 (ZIP 72 kb)

References

  1. 1.
    Kenny PW, Sadowski J (2005) Structure modification in chemical databases. Methods and principles in medicinal chemistry. In: Oprea T (ed) Chemoinformatics in drug discovery. 23:271–285Google Scholar
  2. 2.
    Barnard JM, Kenny PW, Wallace PN (2012) Representing chemical structures in databases for drug design. RSC drug discovery series 13 (drug design strategies) 164–191Google Scholar
  3. 3.
    Southan C, Várkonyi P, Muresan S (2007) Complementarity between public and commercial databases: new opportunities in medicinal chemistry informatics. Curr Top Med Chem 7:1502–1508CrossRefGoogle Scholar
  4. 4.
    Lyne PD, Kenny PW, Cosgrove DA, Deng C, Zabludoff S, Wendoloski JJ, Ashwell S (2004) Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. J Med Chem 47:1962–1968CrossRefGoogle Scholar
  5. 5.
    Krumrine JR, Maynard AT, Lerman CL (2005) Statistical tools for virtual screening. J Med Chem 48:7477–7481CrossRefGoogle Scholar
  6. 6.
    Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Sci 45:177–182CrossRefGoogle Scholar
  7. 7.
    Walters WP, Stahl MT, Murcko MA (1998) Virtual screening–an overview. Drug Discov Today 3:160–178CrossRefGoogle Scholar
  8. 8.
    SMIRKS Theory Manual, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 16 Dec 2012
  9. 9.
    Daylight toolkit, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/products/toolkit.html. Accessed 16 Dec 2012
  10. 10.
    SMARTS Theory Manual, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 20 May 2013
  11. 11.
    Bartlett PA, Shea GT, Telfer SJ, Waterman S (1989) CAVEAT: a program to facilitate the structure-derived design of biologically active molecules. Special publication-Royal Society of Chemistry. Mol Recognit Chem Biochem. Probl 78, 182–196Google Scholar
  12. 12.
    Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-Hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38:2894–2896CrossRefGoogle Scholar
  13. 13.
    Unity. Tripos International, St. Louis, MO 63144-2319. http://www.tripos.com/index.php?family=modules,SimplePage,,,&page=UNITY. Accessed 25 May 2013
  14. 14.
    Van Drie JH, Weininger D, Martin YC (1989) ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J Comput Aided Mol Des 3:225–251CrossRefGoogle Scholar
  15. 15.
    Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comp Sci 28:31–36CrossRefGoogle Scholar
  16. 16.
    Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comp Sci 29:97–101CrossRefGoogle Scholar
  17. 17.
    OEChem Toolkit Manual, OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/docs/toolkits/current/html/OEChem_TK-c++/index.html. Accessed 26 Oct 2012
  18. 18.
    Morley AD, Kenny PW, Burton B, Heald RA, MacFaul PA, Mullett J, Page K, Porres SS, Ribeiro LR, Smith P, Ward S, Wilkinson TJ (2009) 5-Aminopyrimidin-2-ylnitriles as cathepsin K inhibitors. Bioorg Med Chem Lett 19:1568–1661CrossRefGoogle Scholar
  19. 19.
    Elguero J, Marzin C, Katritzky AR, Lind P (1975) The tautomerism of heterocycles. Adv Heterocycl Chem Suppl 1:1–656Google Scholar
  20. 20.
    Button RG, Cairns JP, Taylor PJ (1985) Tautomeric ratio in 4-methylthiazol-2-ylguanidine, a model guanidinoheterocycle. J Chem Soc Perkin Trans 2:1555–1558Google Scholar
  21. 21.
    Albert A, Taylor PJ (1989) The tautomerism of 1,2,3-triazole in aqueous solution. J Chem Soc Perkin Trans 2:1903–1905Google Scholar
  22. 22.
    Martin YC (2009) Let’s not forget tautomers. J Comput Aid Mol Des 23:693–704CrossRefGoogle Scholar
  23. 23.
    Sayle RA (2010) So you think you understand tautomerism? J Comput Aid Mol Des 24:485–496CrossRefGoogle Scholar
  24. 24.
    Oellien F, Cramer J, Beyer C, Ihlenfeldt W-D, Selzer PM (2006) The impact of tautomer forms on pharmacophore-based virtual screening. J Chem Inf Model 46:2342–2354CrossRefGoogle Scholar
  25. 25.
    Claramunt RM, Garcia MA, Lopez C, Trofimenko S, Yap GPA, Alkorta I, Elguero J (2005) The tautomerism of 1H-pyrazole-3(5)-(N-tert-butyl)carboxamide in the solid state and in solution. Magn Reson Chem 43:89–91CrossRefGoogle Scholar
  26. 26.
    Khalili F, Henni A, East ALL (2009) pKa values of some piperazines at (298, 303, 313, and 323) K. J Chem Eng Data 54:2914–2917CrossRefGoogle Scholar
  27. 27.
    Hammett LP (1937) Effect of structure upon the reactions of organic compounds Benzene derivatives. J Am Chem Soc 59:96–103CrossRefGoogle Scholar
  28. 28.
    Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399CrossRefGoogle Scholar
  29. 29.
    Birch AM, Kenny PW, Simpson I, Whittamore PRO (2009) Matched molecular pair analysis of activity and properties of glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 19:850–853CrossRefGoogle Scholar
  30. 30.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method I. Nonpolar gases. J Chem Phys 22:1420–1426CrossRefGoogle Scholar
  31. 31.
    Shirts MR, Mobley DL, Chodera JD (2007) Alchemical free energy calculations: ready for prime time? Ann Rep Comp Chem 3:41–59CrossRefGoogle Scholar
  32. 32.
    Maggiora GM (2006) On outliers and activity cliffs-why QSAR often disappoints. J Chem Inf Model 46:1535CrossRefGoogle Scholar
  33. 33.
    Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure—activity relationship analysis. J Med Chem 53:8209–8223CrossRefGoogle Scholar
  34. 34.
    Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942CrossRefGoogle Scholar
  35. 35.
    Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J Med Chem 39:3049–3059CrossRefGoogle Scholar
  36. 36.
    Blomberg N, Cosgrove DA, Kenny PW, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aid Mol Des 23:513–525CrossRefGoogle Scholar
  37. 37.
    Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B (2006) Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 49:6672–6682CrossRefGoogle Scholar
  38. 38.
    Griffen E, Leach AG, Robb GR, Warner DJ (2011) Matched molecular pairs as a medicinal chemistry tool. J Med Chem 54:7739–7750CrossRefGoogle Scholar
  39. 39.
    Wassermann AM, Dimova D, Iyer P, Bajorath J (2012) Advances in computational medicinal chemistry: matched molecular pair analysis. Drug Dev Res 73:518–527CrossRefGoogle Scholar
  40. 40.
    Dossetter AG, Griffen EJ, Leach AG (2013) Matched molecular pair analysis in drug discovery. Drug Discov Today 18:724–731Google Scholar
  41. 41.
    Herr RJ (2002) 5-Substituted 1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393CrossRefGoogle Scholar
  42. 42.
    LOGKOW, A databank of evaluated octanol-water partition coefficients: http://logkow.cisti.nrc.ca/logkow/index.jsp. Accessed 26 Oct 2012
  43. 43.
    Thornber CW (1979) Isosterism and molecular modification in drug design. Chem Soc Rev 8:563–580CrossRefGoogle Scholar
  44. 44.
    Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176CrossRefGoogle Scholar
  45. 45.
    Sheridan RP (2002) The most common chemical replacements in drug-like compounds. J Chem Inf Comp Sci 42:103–108CrossRefGoogle Scholar
  46. 46.
    Meanwell Nicholas A (2011) Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem 54:2529–2591CrossRefGoogle Scholar
  47. 47.
    Papadatos G, Brown N (2013) In silico applications of bioisosterism in contemporary medicinal chemistry practice. WIREs Comput Mol Sci 3:339–354CrossRefGoogle Scholar
  48. 48.
    Boström J, Hogner A, Llinas A, Wellner E, Plowright AT (2012) Oxadiazoles in medicinal chemistry. J Med Chem 55:1817–1830CrossRefGoogle Scholar
  49. 49.
    Sutherland JJ, Raymond JW, Stevens JL, Baker TK, Watson DE (2012) Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem 55:6455–6466CrossRefGoogle Scholar
  50. 50.
    Bach RD, Dmitrenko O (2004) Strain energy of small ring hydrocarbons. Influence of C–H bond dissociation energies. J Am Chem Soc 126:4444–4452CrossRefGoogle Scholar
  51. 51.
    Tian Z, Fattahi A, Lis L, Kass SR (2006) Cycloalkane and cycloalkene C–H bond dissociation energies. J Am Chem Soc 128:17087–17092CrossRefGoogle Scholar
  52. 52.
    Perrin CL, Fabian MA, Rivero IA (1999) Basicities of cycloalkylamines: Baeyer strain theory revisited. Tetrahedron 55:5773–5780CrossRefGoogle Scholar
  53. 53.
    ChEMBL version 15. http://www.ebi.ac.uk/chembl. Accessed 30 May 2013
  54. 54.
    Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348CrossRefGoogle Scholar
  55. 55.
    Warner DJ, Griffen EJ, St-Gallay SA (2010) WizePairZ: a novel algorithm to identify, encode, and exploit matched molecular pairs with unspecified cores in medicinal chemistry. J Chem Inf Model 50:1350–1357CrossRefGoogle Scholar
  56. 56.
    Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, Bravi G, Richmond NJ, Pickett SD, Hussain J, Pritchard JM, Cooper AWJ, MacDonald SJF (2010) Lead optimization using matched molecular pairs: inclusion of contextual information for enhanced prediction of hERG inhibition, solubility, and lipophilicity. J Chem Inf Model 50:1872–1886CrossRefGoogle Scholar
  57. 57.
    Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188:725–734CrossRefGoogle Scholar
  58. 58.
    Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum Cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218CrossRefGoogle Scholar
  59. 59.
    Jaishankar P, Hansell E, Zhao D-M, Doyle PS, McKerrow JH, Renslo AR (2008) Potency and selectivity of P2/P3-modified inhibitors of cysteine proteases from trypanosomes. Bioorg Med Chem Lett 18:624–628CrossRefGoogle Scholar
  60. 60.
    Leach AG, Pilling EA, Rabow AA, Tomasi S, Asaad N, Buurma NJ, Ballard A, Narduolo S (2012) Enantiomeric pairs reveal that key medicinal chemistry parameters vary more than simple physical property based models can explain. Med Chem Commun 3:528–540CrossRefGoogle Scholar
  61. 61.
    Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS (2009) Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 284:25697–25703CrossRefGoogle Scholar
  62. 62.
    OMEGA.OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/omega. Accessed 28 Feb 2013
  63. 63.
    Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer Generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584 Google Scholar
  64. 64.
    Halgren TA (1999) MMFF VI. MMFF94S option for energy minimization studies. J Comp Chem 20:720–729CrossRefGoogle Scholar
  65. 65.
    SZYBKI. OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/szybki. Accessed 28 Feb 2013
  66. 66.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Peter W. Kenny
    • 1
  • Carlos A. Montanari
    • 1
  • Igor M. Prokopczyk
    • 1
  • Fernanda A. Sala
    • 1
  • Geraldo Rodrigues Sartori
    • 1
  1. 1.Grupo de Estudos em Química Medicinal (NEQUIMED), Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations