Journal of Computer-Aided Molecular Design

, Volume 27, Issue 8, pp 739–754 | Cite as

Human farnesyl pyrophosphate synthase inhibition by nitrogen bisphosphonates: a 3D-QSAR study

  • David Fernández
  • Joaquín Ortega-Castro
  • Juan Frau


We report the results of a comparative molecular field analysis and comparative molecular similarity index analysis of the human farnesyl pyrophosphate synthase (FPPS) inhibition by nitrogen bisphosphonates (NBPs) taking into account their time-dependent inhibition efficacies. The 3D-QSAR models obtained provide steric, electrostatic and hydrophobic contour maps consistent with the interactions into the active site of human FPPS observed in available crystallographic structures. Furthermore, the 3D-QSAR models obtained provide accurately IC50 values of the NBPs of the training set. The predictive ability of these 3D-QSAR models was found to rely on the choice of biologically active conformations of the target molecules and on a careful examination of the protonation status of the NBPs in the training set. The best models obtained can be useful to predict biological values of a high number of NBPs that have been used for the treatment of different diseases as potential inhibitors of the activity of the FPPS enzyme.


Bisphosphonates 3D-QSAR Human farnesyl pyrophosphate synthase Inhibitors 

Supplementary material

10822_2013_9674_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1918 kb)


  1. 1.
    Fleisch H (1993) Editorial: prospective use of bisphosphonates in osteoporosis. J Clin Endocrinol Metab 76:1397–1398CrossRefGoogle Scholar
  2. 2.
    Rodan GA (1998) Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 38:375–388CrossRefGoogle Scholar
  3. 3.
    Martin MB, Arnold W, Heath HT III, Urbina JA, Oldfield E (1999) Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis. Biochem Biophys Res Commun 263:754–758CrossRefGoogle Scholar
  4. 4.
    Coleman RE (2005) Bisphosphonates in breast cancer. Ann Oncol 16:687–695CrossRefGoogle Scholar
  5. 5.
    Sicard H, Al Saati T, Delsol G, Fournié JJ (2001) Synthetic phosphoantigens enhance human Vγ9 Vδ2T lymphocytes killing of non-Hodgkin’s B lymphoma. Mol Med 7:711–722Google Scholar
  6. 6.
    Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) γδT cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206CrossRefGoogle Scholar
  7. 7.
    Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257:16–35CrossRefGoogle Scholar
  8. 8.
    Martin MB, Sanders JM, Kendrick H, Luca-Fradley K, Lewis JC, Grimley JS, Van Brussel EM, Olsen JR, Meints GA, Burzynska A, Kafarski P, Croft SL, Oldfield E (2002) Activity of bisphosphonates against trypanosoma brucei rhodesiense. J Med Chem 45:2904–2914CrossRefGoogle Scholar
  9. 9.
    Dąbrowska E, Burzyńska A, Mucha A, Matczak-Jon E, Sawka-Dobrowolska W, Berlicki L, Kafarski P (2009) Insight into the mechanism of three component condensation leading to aminomethylenebisphosphonates. J Org Chem 694:3806–3813CrossRefGoogle Scholar
  10. 10.
    Baojie Li B, Chau JFL, Wang X, Leong WF (2011) Bisphosphonates, specific inhibitors of osteoclast function and a class of drugs for osteoporosis therapy. J Cell Biochem 112:1229–1242CrossRefGoogle Scholar
  11. 11.
    Dunford JE, Kwaasi AA, Rogers MJ, Barnett BL, Ebetino FH, Russell RGG, Oppermann U, Kavanagh KL (2008) Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: time-dependent inhibition of human farnesyl pyrophosphate synthase. J Med Chem 51:2187–2195CrossRefGoogle Scholar
  12. 12.
    Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269CrossRefGoogle Scholar
  13. 13.
    Sinensky M (2000) Recent advances in the study of prenylated proteins. Biochim Biophys Acta 1484:93–106CrossRefGoogle Scholar
  14. 14.
    Shipman CM, Rogers MJ, Apperley JF, Russell RG, Croucher PI (1997) Bisphosphonates induce apoptosis in human myeloma cell lines; a novel anti-tumour activity. Br J Haematol 98:665–672CrossRefGoogle Scholar
  15. 15.
    Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Davanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117:209–257CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Cao R, Yin F, Hudock MP, Guo R-T, Krysiak K, Mukherjee S, Gao Y-G, Robinson J, Song Y, No JH, Bergan K, Leon A, Cass L, Goddard A, Chang T-K, Lin F-Y, Van Beek E, Papapoulos S, Wang AH-J, Kubo T, Ochi M, Mukkamala D, Oldfield E (2009) Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. J Am Chem Soc 131:5153–5162CrossRefGoogle Scholar
  17. 17.
    Frith JC, Mönkkönen J, Blackburn M, Russell RGG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5`-(β, γ-dichloromethylene) triphosphate, by mammalian Cells in vitro. J Bone Miner Res 12:1358–1367CrossRefGoogle Scholar
  18. 18.
    Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33:10871–10877CrossRefGoogle Scholar
  19. 19.
    Tarshis LC, Proteau P, Poulter CD, Sacchettini JC (1996) Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci 93:15018–15023CrossRefGoogle Scholar
  20. 20.
    Gabelli SB, McLellan JS, Montalvetti A, Oldfield E, Docampo R, Amzel LM (2005) Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: implications for drug design. Proteins 62:80–88CrossRefGoogle Scholar
  21. 21.
    Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci 103:7829–7834CrossRefGoogle Scholar
  22. 22.
    Rondeau JM, Bitsch F, Bourgier E, Geiser M, Hemming R, Kroemer M, Lehmann S, Ramage P, Rieffel S, Strauss A, Green JR, Jahnke W (2006) Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem 1:267–273CrossRefGoogle Scholar
  23. 23.
    Lin YS, Park J, De Schutter JW, Huang XF, Berghuis AM, Sebag M, Tsantrizos YS (2012) Design and synthesis of active site inhibitors of the human farnesyl pyrophosphate synthase: apoptosis and inhibition of ERK phosphorylation in multiple myeloma cells. J Med Chem 55:3201–3215CrossRefGoogle Scholar
  24. 24.
    Szabo CM, Martin MB, Oldfield E (2002) An investigation of bone resorption and Dictyostelium discoideum growth inhibition by bisphosphonate drugs. J Med Chem 45:2894–2903CrossRefGoogle Scholar
  25. 25.
    Sanders JM, Gómez AO, Mao J, Meints GA, Van Brussel EM, Burzynska A, Kafarski P, González-Pacanoska D, Oldfiel E (2003) 3D-QSAR investigation of the inhibition of leishmania major farnesyl pyrophosphate synthase by bisphosphonates. J Med Chem 46:5171–5183CrossRefGoogle Scholar
  26. 26.
    Whitaker M, Guo J, Kehoe T, Benson G (2012) Perspective: bisphosphonates for osteoporosis - where do we go from here? N Engl J Med 366:2048–2051CrossRefGoogle Scholar
  27. 27.
    Hess LM, Jeter JM, Benham-Hutchins M, Alberts DS (2008) Factors associated with osteonecrosis of the jaw among bisphophonates users. Am J Med 121:475–483CrossRefGoogle Scholar
  28. 28.
    Bauss F, Pfister T, Papapoulos S (2008) Ibandronate uptake in the jaw is similar to long bones and vertebrae in the rat. J Bone Miner Metab 26:406–408CrossRefGoogle Scholar
  29. 29.
    Ruggiero SL, Mehrotra B (2009) Bisphosphonate-related osteonecrosis of the jaw: diagnosis, prevention, and management. Annu Rev Med 60:85–96CrossRefGoogle Scholar
  30. 30.
    Park-Wyllie LP, Mamdani MM, Juurlink DN, Hawker GA, Gunraj N, Austin PC, Whelan DB, Weiler JP, Laupacis A (2011) Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAMA 305:783–789CrossRefGoogle Scholar
  31. 31.
    Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967CrossRefGoogle Scholar
  32. 32.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146CrossRefGoogle Scholar
  33. 33.
    Kotsikorou E, Oldfield E (2003) A quantitative structure-activity relationship and pharmacophore modelling investigation of aryl-X and heterocyclic bisphosphonate as bone resorption agents. J Med Chem 46:2932–2944CrossRefGoogle Scholar
  34. 34.
    Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comp Chem 10:982–1012CrossRefGoogle Scholar
  35. 35.
    SYBYL 8.0 Tripos Inc., 1699 South Hanley Rd. St. Louis, Missouri, 63144-2917Google Scholar
  36. 36.
    NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold FGoogle Scholar
  37. 37.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  38. 38.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  39. 39.
    Gaussian 09, Revision B.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J. C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT, 2009Google Scholar
  40. 40.
    Weinhold FA (1997) Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct (Theochem) 398:181–197CrossRefGoogle Scholar
  41. 41.
    Kubinyi H (1998) Comparative molecular field analysis (CoMFA). In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) The encyclopedia of computational chemistry, vol 1. Wiley, Chichester, p 448–460Google Scholar
  42. 42.
    Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172CrossRefGoogle Scholar
  43. 43.
    Geladi P, Kowalski B (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  44. 44.
    Hasegawa K, Funatsu K (2000) Partial least squares modelling and genetic algorithm optimization in quantitative structure-activity relationships. SAR QSAR Environ Res 11:189–209CrossRefGoogle Scholar
  45. 45.
    Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–406CrossRefGoogle Scholar
  46. 46.
    MarvinSketch 5.7, Calculator Plugin and Chemical Terms Demo Copyright © 1999–2012 ChemAxon LtdGoogle Scholar
  47. 47.
    SPARC Performs Automated Reasoning in Chemistry. Sparc v4.6Google Scholar
  48. 48.
    Haynes WM (2012) CRC Handbook of Chemistry and Physics 93th edn. Taylor & Francis GroupGoogle Scholar
  49. 49.
    Walba H, Isensee RW (1961) Acidity constants of some arylimidazoles and their cations. J Org Chem 26:289–2791CrossRefGoogle Scholar
  50. 50.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:267–276CrossRefGoogle Scholar
  51. 51.
    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36:3219–3228CrossRefGoogle Scholar
  52. 52.
    Marsili M, Gasteiger J (1980) π Charge distribution from molecular topology and π orbital electronegativity. Croat Chem Acta 53:601–614Google Scholar
  53. 53.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827CrossRefGoogle Scholar
  54. 54.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542CrossRefGoogle Scholar
  55. 55.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comp Chem 5:129–145CrossRefGoogle Scholar
  56. 56.
    Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comp Chem 11:431–439CrossRefGoogle Scholar
  57. 57.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comp Chem 11:361–373CrossRefGoogle Scholar
  58. 58.
    Ohno K, Mori K, Orita M, Takeuchi M (2011) Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Curr Med Chem 18:220–233CrossRefGoogle Scholar
  59. 59.
    Sanz-Rodríguez CE, Concepción JL, Pekerar S, Oldfield E, Urbina JA (2007) Bisphosphonates as inhibitors of trypanosoma cruzi hexokinase: kinetic and metabolic studies. J Biol Chem 282:12377–12387CrossRefGoogle Scholar
  60. 60.
    Feng-Lei W, Rong-Xin Y, Ji-Min X (2011) 4-[2-(Hydrogen phosphonate)-2-hydroxy-2-phosphonoethyl]pyridinium. Acta Cryst. E 67:o1025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David Fernández
    • 1
  • Joaquín Ortega-Castro
    • 1
  • Juan Frau
    • 1
  1. 1.Departament de Química, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS)Universitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations