Journal of Computer-Aided Molecular Design

, Volume 27, Issue 7, pp 615–635 | Cite as

Design, synthesis and in vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions

  • Rafik KaramanEmail author
  • Hiba Ghareeb
  • Khuloud Kamal Dajani
  • Laura Scrano
  • Hussein Hallak
  • Saleh Abu-Lafi
  • Gennaro Mecca
  • Sabino A. Bufo


Based on density functional theory (DFT) calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives four tranexamic acid prodrugs were designed. The DFT results on the acid catalyzed hydrolysis revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. When the amine leaving group was a primary amine or tranexamic acid moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in the cases by which the amine leaving group was aciclovir or cefuroxime the rate-limiting step was the tetrahedral intermediate formation. The linear correlation between the calculated DFT and experimental rates for N-methylmaleamic acids 17 provided a credible basis for designing tranexamic acid prodrugs that have the potential to release the parent drug in a sustained release fashion. For example, based on the calculated B3LYP/6-31G(d,p) rates the predicted t1/2 (a time needed for 50 % of the prodrug to be converted into drug) values for tranexamic acid prodrugs ProD 1ProD 4 at pH 2 were 556 h [50.5 h as calculated by B3LYP/311+G(d,p)] and 6.2 h as calculated by GGA: MPW1K), 253 h, 70 s and 1.7 h, respectively. Kinetic study on the interconversion of the newly synthesized tranexamic acid prodrug ProD 1 revealed that the t1/2 for its conversion to the parent drug was largely affected by the pH of the medium. The experimental t1/2 values in 1 N HCl, buffer pH 2 and buffer pH 5 were 54 min, 23.9 and 270 h, respectively.

Graphical Abstract


Tranexamic acid Prodrugs Menstrual bleeding Fibrinolysis Proton transfer Traumatic haemorrhage Hemophilia 



The author would like to acknowledge funding by the German Research Foundation (DFG, ME 1024/8-1) and Exo Research Organization, Potenza, Italy. Special thanks are also given to Nardene Karaman, Angi Karaman, Donia Karaman, and Rowan Karaman for technical assistance.

Supplementary material

10822_2013_9666_MOESM1_ESM.doc (260 kb)
Supplementary material 1 (DOC 260 kb)


  1. 1.
    Cyklokapron® tranexamic acid injection prescribing information:
  2. 2.
    CRASH-2 trial collaborators (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 6736(10):60835Google Scholar
  3. 3.
    Gohel M, Patel P, Gupta A, Desai P (2007) Efficacy of tranexamic acid in decreasing blood loss during and after cesarean section: a randomized case controlled prospective study. J Obstet Gynaecol India 57(3):227–230Google Scholar
  4. 4.
    Giancarlo L, Francesco B, Angela L, Pierluigi P, Gina R (2011) Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus 9:189–217Google Scholar
  5. 5.
    Lukes AS, Kouides PA, Moore KA (2011) Tranexamic acid: a novel oral formulation for the treatment of heavy menstrual bleeding. Womens Health (Lond Engl) 7(2):151–158CrossRefGoogle Scholar
  6. 6.
    Lukes AS, Moore KA, Muse KN, Gersten JK, Hecht BR, Edlund M, Richter HE, Eder SE, Attia GR, Patrick DL, Rubin A, Shangold GA (2010) Tranexamic acid treatment for heavy menstrual bleeding: a randomized controlled trial. Obstet Gynecol 116(4):865–875CrossRefGoogle Scholar
  7. 7.
    Ducloy-Bouthors AS, Jude B, Duhamel A, Broisin F, Huissoud C, Keita-Meyer H, Mandelbrot L, Tillouche N, Fontaine S, Le Goueff F, Depret-Mosser S, Vallet B, EXADELI Study Group, Susen S (2011) High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Crit Care 15(2):R117. doi: 10.1186/cc10143 (Epub 2011 Apr 15)CrossRefGoogle Scholar
  8. 8.
    Ayedi M, Jarraya A, Smaoui M, Zouari J, Smaoui L, Kolsi K (2011) Effect of tranexamic acid on post partum hemorrhage by uterine atony: a preliminary result of a randomized, placebocontrolled trial: 11AP4‐7. Eur J Anaesthesiol 28:165CrossRefGoogle Scholar
  9. 9.
    Gungorduk K, Yıldırım G, Asıcıoğlu O, Gungorduk OC, Sudolmus S, Ark C (2011) Efficacy of intravenous tranexamic acid in reducing blood loss after elective cesarean section: a prospective, randomized, double-blind, placebo-controlled study. Am J Perinatol 28(3):233–240CrossRefGoogle Scholar
  10. 10.
    Sekhavat L, Tabatabaii A, Dalili M, Farajkhoda T, Tafti AD (2009) Efficacy of tranexamic acid in reducing blood loss after cesarean section. J Matern Fetal Neonatal Med 22(1):72–75CrossRefGoogle Scholar
  11. 11.
    Sentürk MB, Cakmak Y, Yildiz G, Yildiz P (2012) Tranexamic acid for cesarean section: a double-blind, placebo-controlled, randomized clinical trial. Arch Gynecol Obstet. Nov 11 [Epub ahead of print]Google Scholar
  12. 12.
    Cardone D, Klein AA (2009) Perioperative blood conservation. Eur J Anaesthesiol 26:722–729CrossRefGoogle Scholar
  13. 13.
    Nilsson IM (1980) Clinical pharmacology of aminocaproic and tranexamic acids. J Clin Pathol 33(14):41–47Google Scholar
  14. 14.
    Turki A, Michael W (2011) Tranexamic acid treatment of life-threatening hematuria in polycystic kidney disease (case report). Int J Nephrol 2011:203579. doi: 10.4061/2011/203579 Google Scholar
  15. 15.
    Maedaa K, Naganuma M (1998) Topical trans-4-aminomethyl cyclohexane carboxylic acid prevents ultraviolet radiation-induced pigmentation. J Photochem Photobiol B 47:136–141CrossRefGoogle Scholar
  16. 16.
    Sufan W, Hangyan S, Hua W, Sheng Y, Jincai G, Yi S, Lei P (2012) Treatment of melasma with oral administration of tranexamic acid. Aesthet Plast Surg 36:964–970CrossRefGoogle Scholar
  17. 17.
    Pilbrant A, Schannong M, Vessman J (1981) Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol 20(1):65–72CrossRefGoogle Scholar
  18. 18.
    Karaman R (2008) Analysis of Menger’s spatiotemporal hypothesis. Tetrahedron Lett 49:5998–6002CrossRefGoogle Scholar
  19. 19.
    Karaman R (2009) Cleavage of Menger’s aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct (Theochem) 910:27–33CrossRefGoogle Scholar
  20. 20.
    Karaman R (2010) The efficiency of proton transfer in Kirby’s enzyme model, a computational approach. Tetrahedron Lett 51:2130–2135CrossRefGoogle Scholar
  21. 21.
    Karaman R, Pascal RA (2010) Computational analysis of intramolecularity in proton transfer reactions. Org Biomol Chem 8:5174–5178CrossRefGoogle Scholar
  22. 22.
    Karaman R (2010) A general equation correlating intramolecular rates with ‘attack’ parameters: distance and angle. Tetrahedron Lett 51:5185–5190CrossRefGoogle Scholar
  23. 23.
    Karaman R (2011) Analyzing the efficiency of proton transfer to carbon in Kirby’s enzyme model—a computational approach. Tetrahedron Lett 52:699–704CrossRefGoogle Scholar
  24. 24.
    Karaman R (2011) Analyzing the efficiency in intramolecular amide hydrolysis of Kirby’s N-alkylmaleamic acids—a computational approach. Comput Theor Chem 974:133–142CrossRefGoogle Scholar
  25. 25.
    Karaman R (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in lactonization of the trimethyl lock system. Bioorg Chem 37:11–25CrossRefGoogle Scholar
  26. 26.
    Karaman R (2009) Revaluation of Bruice’s proximity orientation. Tetrahedron Lett 50:452–458CrossRefGoogle Scholar
  27. 27.
    Karaman R (2009) Accelerations in the lactonization of trimethyl lock systems are due to proximity orientation and not to strain effects. Res Lett Org Chem. doi: 10.1155/2009/240253
  28. 28.
    Karaman R (2009) The gem-disubstituent effect—a computational study that exposes the relevance of existing theoretical models. Tetrahedron Lett 50:6083–6087CrossRefGoogle Scholar
  29. 29.
    Karaman R (2009) Analyzing Kirby’s amine olefin—a model for amino-acid ammonia lyases. Tetrahedron Lett 50:7304–7309CrossRefGoogle Scholar
  30. 30.
    Karaman R (2009) The effective molarity (EM) puzzle in proton transfer reactions. Bioorg Chem 37:106–110CrossRefGoogle Scholar
  31. 31.
    Karaman R (2010) Effects of substitution on the effective molarity (EM) for five membered ring-closure reactions—a computational approach. J Mol Struct (Theochem) 939:69–74CrossRefGoogle Scholar
  32. 32.
    Karaman R (2010) The effective molarity (EM) puzzle in intramolecular ring-closing reactions. J Mol Struct (Theochem) 940:70–75CrossRefGoogle Scholar
  33. 33.
    Menger FM, Karaman R (2010) A singularity model for chemical reactivity. Eur J Chem 16:1420–1427CrossRefGoogle Scholar
  34. 34.
    Karaman R (2010) The effective molarity (EM)—a computational approach. Bioorg Chem 38:165–172CrossRefGoogle Scholar
  35. 35.
    Karaman R (2010) Proximity vs. strain in ring-closing reactions of bifunctional chain molecules—a computational approach. J Mol Phys 108:1723–1730CrossRefGoogle Scholar
  36. 36.
    Karaman R (2011) The role of proximity orientation in intramolecular proton transfer reactions. J Comput Theor Chem 966:311–321CrossRefGoogle Scholar
  37. 37.
    Barber SE, Dean KES, Kirby AJ (1999) A mechanism for efficient proton-transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem 77:792–801CrossRefGoogle Scholar
  38. 38.
    Kirby AJ, de Silva MF, Lima D, Roussev CD, Nome F (2006) Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc 128:16944–16952CrossRefGoogle Scholar
  39. 39.
    Kirby AJ, Williams NH (1994) Efficient intramolecular general acid catalysis of enol ether hydrolysis. Hydrogen-bonding stabilization of the transition state for proton transfer to carbon. J Chem Soc Perkin Trans 2:643–648Google Scholar
  40. 40.
    Kirby AJ, Williams NH (1991) Efficient intramolecular general acid catalysis of vinyl ether hydrolysis by the neighbouring carboxylic acid group. J Chem Soc Chem Commun 1643–1644Google Scholar
  41. 41.
    Kirby AJ (1996) Enzyme mechanisms, models, and mimics. Angew Chem Int Ed Engl 35:706–724CrossRefGoogle Scholar
  42. 42.
    Fife TH, Przystas TJ (1979) Intramolecular general acid catalysis in the hydrolysis of acetals with aliphatic alcohol leaving groups. J Am Chem Soc 101:1202–1210CrossRefGoogle Scholar
  43. 43.
    Kirby AJ (2005) Effective molarities for intramolecular reactions. J Phys Org Chem 18:101–278CrossRefGoogle Scholar
  44. 44.
    Menger FM, Ladika M (1988) Fast hydrolysis of an aliphatic amide at neutral pH and ambient temperature. A peptidase model. J Am Chem Soc 110:6794–6796CrossRefGoogle Scholar
  45. 45.
    Menger FM (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Res 18:128–134CrossRefGoogle Scholar
  46. 46.
    Menger FM, Chow JF, Kaiserman H, Vasquez PC (1983) Directionality of proton transfer in solution. Three systems of known angularity. J Am Chem Soc 105:4996–5002CrossRefGoogle Scholar
  47. 47.
    Menger FM, Galloway AL, Musaev DG (2003) Relationship between rate and distance. Chem Commun 2370–2371Google Scholar
  48. 48.
    Milstein S, Cohen LA (1970) Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc 92:4377–4382CrossRefGoogle Scholar
  49. 49.
    Milstein S, Cohen LA (1970) Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci USA 67:1143–1147CrossRefGoogle Scholar
  50. 50.
    Milstein S, Cohen LA (1972) Stereopopulation control I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc 94:9158–9165CrossRefGoogle Scholar
  51. 51.
    Brown RF, van Gulick NM (1956) The geminal alkyl effect on the rates of ring closure of bromobutylamines. J Org Chem 21:1046–1049CrossRefGoogle Scholar
  52. 52.
    Bruice TC, Pandit UK (1960) The effect of geminal substitution ring size and rotamer distribution on the intra molecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc 82:5858–5865CrossRefGoogle Scholar
  53. 53.
    Bruice TC, Pandit UK (1960) Intramolecular models depicting the kinetic importance of ‘‘Fit’’ in enzymatic catalysis. Proc Natl Acad Sci USA 46:402–404CrossRefGoogle Scholar
  54. 54.
    Galli C, Mandolini L (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem 2000:3117–3125CrossRefGoogle Scholar
  55. 55.
    Karaman R (2010) Prodrugs of aza nucleosides based on proton transfer reactions. J Comput Aided Mol Des 24:961–970CrossRefGoogle Scholar
  56. 56.
    Karaman R (2011) Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des 78:853–863CrossRefGoogle Scholar
  57. 57.
    Karaman R, Dajani KK, Qtait A, Khamis M (2012) Prodrugs of acyclovir—a computational approach. Chem Biol Drug Des 79:819–834CrossRefGoogle Scholar
  58. 58.
    Karaman R, Hallak H (2010) Computer-assisted design of pro-drugs for antimalarial atovaquone. Chem Biol Drug Des 76:350–360CrossRefGoogle Scholar
  59. 59.
    Karaman R, Dajani KK, Hallak H (2012) Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model 18:1523–1540CrossRefGoogle Scholar
  60. 60.
    Hejaz H, Karaman R, Khamis M (2012) Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 18:103–114CrossRefGoogle Scholar
  61. 61.
    Kirby AJ, Lancaster PW (1972) Structure and efficiency in intramolecular and enzymatic catalysis. Catalysis of amide hydrolysis by the carboxy-group of substituted maleamic acids. J Chem Soc Perkin Trans 2:1206–1214Google Scholar
  62. 62.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167CrossRefGoogle Scholar
  63. 63.
    Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions.”. J Chem Theory Comput 4(11):1849–1868CrossRefGoogle Scholar
  64. 64.
    Zheng J, Zhao Y, Truhlar DG (2009) The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights. J Chem Theory Comput 5(4):808–821CrossRefGoogle Scholar
  65. 65.
    Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin K. N, Staroverov V. N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J. C, Iyengar S. S, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  66. 66.
    Casewit CJ, Colwell KS, Rappe’ AK (1992) Application of a universal force field to main group compounds. J Am Chem Soc 114:10046–10053CrossRefGoogle Scholar
  67. 67.
    Murrell JN, Laidler KJ (1968) Symmetries of activated complexes. Trans Faraday Soc 64:371–377CrossRefGoogle Scholar
  68. 68.
    Muller K (1980) Reaction paths on multidimensional energy hypersurfaces. Angew Chem Int Ed Engl 19:1–13CrossRefGoogle Scholar
  69. 69.
    Cancès MT, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  70. 70.
    Mennucci B, Tomasi J (1997) Coninuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151CrossRefGoogle Scholar
  71. 71.
    Mennucci B, Cancès MT, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517CrossRefGoogle Scholar
  72. 72.
    Tomasi J, Mennucci B, Cancès MT (1997) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (Theochem) 464:211–226CrossRefGoogle Scholar
  73. 73.
    Kluger R, Chin J (1982) Carboxylic acid participation in amide hydrolysis. Evidence that separation of a nonbonded complex can be rate determining. J Am Chem Soc 104:2891–2897CrossRefGoogle Scholar
  74. 74.
    Katagi T (1990) AM1 study of acid-catalyzed hydrolysis of maleamic (4-amino-4-oxo-2-butenoic) acids. J Comput Chem 11(9):1094–1100CrossRefGoogle Scholar
  75. 75.
    Burker U, Allinger NL (1982) Molecular mechanics. American Chemical Society, Washington, DCGoogle Scholar
  76. 76.
    Kirby AJ, Parkinson A (1994) Most efficient intramolecular general acid catalysis of acetal hydrolysis by the carboxyl group. J Chem Soc Chem Commun 707–708Google Scholar
  77. 77.
    Brown CJ, Kirby AJ (1997) Efficiency of proton transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of dialkyl acetals of benzaldehyde. J Chem Soc Perkin Trans 2:1081–1094Google Scholar
  78. 78.
    Craze G-A, Kirby AJ (1974) The role of the carboxy-group in intramolecular catalysis of acetal hydrolysis. The hydrolysis of substituted 2- methoxymethoxybenzoic acids. J Chem Soc Perkin Trans 2:61–66Google Scholar
  79. 79.
    Hartwell E, Hodgson DRW, Kirby AJ (2000) Exploring the limits of efficiency of proton-transfer catalysis in models and enzymes. J Am Chem Soc 122:9326–9327CrossRefGoogle Scholar
  80. 80.
    Kirby AJ (1997) Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res 30:290–296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rafik Karaman
    • 1
    • 3
    Email author
  • Hiba Ghareeb
    • 1
  • Khuloud Kamal Dajani
    • 2
  • Laura Scrano
    • 3
  • Hussein Hallak
    • 1
  • Saleh Abu-Lafi
    • 1
  • Gennaro Mecca
    • 4
  • Sabino A. Bufo
    • 3
  1. 1.Bioorganic Chemistry Department, Faculty of PharmacyAl-Quds UniversityJerusalemIsrael
  2. 2.Faculty of Public Health SciencesAl-Quds UniversityJerusalemIsrael
  3. 3.Department of SciencesUniversity of BasilicataPotenzaItaly
  4. 4.Exo Research OrganizationPotenzaItaly

Personalised recommendations