Journal of Computer-Aided Molecular Design

, Volume 27, Issue 5, pp 443–453 | Cite as

Cheminformatics aspects of high throughput screening: from robots to models: symposium summary

  • Y. Jane Tseng
  • Eric Martin
  • Cristian G. Bologa
  • Anang A. Shelat
Article

Abstract

The “Cheminformatics aspects of high throughput screening (HTS): from robots to models” symposium was part of the computers in chemistry technical program at the American Chemical Society National Meeting in Denver, Colorado during the fall of 2011. This symposium brought together researchers from high throughput screening centers and molecular modelers from academia and industry to discuss the integration of currently available high throughput screening data and assays with computational analysis. The topics discussed at this symposium covered the data-infrastructure at various academic, hospital, and National Institutes of Health-funded high throughput screening centers, the cheminformatics and molecular modeling methods used in real world examples to guide screening and hit-finding, and how academic and non-profit organizations can benefit from current high throughput screening cheminformatics resources. Specifically, this article also covers the remarks and discussions in the open panel discussion of the symposium and summarizes the following talks on “Accurate Kinase virtual screening: biochemical, cellular and selectivity”, “Selective, privileged and promiscuous chemical patterns in high-throughput screening” and “Visualizing and exploring relationships among HTS hits using network graphs”.

Keywords

Cheminformatics High throughput screening Molecular modeling Data-infrastructure 

References

  1. 1.
    Martin E, Mukherjee P, Sullivan D, Jansen J (2011) J Chem Inf Model 51(8):1942CrossRefGoogle Scholar
  2. 2.
    Martin E, Mukherjee P (2011) J Chem Inf Model 52(1):156CrossRefGoogle Scholar
  3. 3.
    Martin EJ, Sullivan DC (2008) J Chem Inf Model 48(4):861CrossRefGoogle Scholar
  4. 4.
    Axerio-Cilies P, Castañeda I, Mirza A, Reynisson J (2009) Eur J Med Chem 44(3):1128CrossRefGoogle Scholar
  5. 5.
    Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, Prossnitz ER (2006) Nat Chem Biol 2(4):207CrossRefGoogle Scholar
  6. 6.
    Huth JR, Song D, Mendoza RR, Black-Schaefer CL, Mack JC, Dorwin SA, Ladror US, Severin JM, Walter KA, Bartley DM, Hajduk PJ (2007) Chem Res Toxicol 20(12):1752CrossRefGoogle Scholar
  7. 7.
    Di L, Kerns EH (2009) Chem Biodivers 6(11):1875CrossRefGoogle Scholar
  8. 8.
    McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) J Med Chem 46(20):4265CrossRefGoogle Scholar
  9. 9.
    Rishton GM (1997) Drug Discovery Today 2(9):382CrossRefGoogle Scholar
  10. 10.
    Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, Thomas CJ, Maloney DJ, Shoichet BK, Simeonov A (2009) J Med Chem 53(1):37CrossRefGoogle Scholar
  11. 11.
    Baell JB, Holloway GA (2010) J Med Chem 53(7):2719CrossRefGoogle Scholar
  12. 12.
    Metz J, Huth J, Hajduk P (2007) J Comput-Aid Mol Des 21(1–3):139CrossRefGoogle Scholar
  13. 13.
    Thorne N, Auld DS, Inglese J (2010) Curr Opin Chem Biol 14(3):315CrossRefGoogle Scholar
  14. 14.
    Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ (2004) J Am Chem Soc 127(1):217CrossRefGoogle Scholar
  15. 15.
    Wilkens S, Janes J, Su A (2005) J Med Chem 48(9):3182CrossRefGoogle Scholar
  16. 16.
    Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B (2006) J Med Chem 49(23):6672CrossRefGoogle Scholar
  17. 17.
    Wetzel S, Klein K, Renner S, Rauh D, Oprea T, Mutzel P, Waldmann H (2009) Nat Chem Biol 5(8):581CrossRefGoogle Scholar
  18. 18.
    Schuffenhauer A, Ertl P, Roggo S, Wetzel S, Koch M, Waldmann H (2007) J Chem Inf Model 47(1):47CrossRefGoogle Scholar
  19. 19.
    Guiguemde W, Shelat A, Bouck D, Duffy S, Crowther G, Davis P, Smithson D, Connelly M, Clark J, Zhu F, Jiménez-Díaz M, Martinez M, Wilson E, Tripathi A, Gut J, Sharlow E, Bathurst I, El Mazouni F, Fowble J, Forquer I, McGinley P, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal P, Derisi J, Sullivan D, Lazo J, Roos D, Riscoe M, Phillips M, Rathod P, Van Voorhis W, Avery V, Guy R (2010) Nature 465(7296):311CrossRefGoogle Scholar
  20. 20.
    Bemis GW, Murcko MA (1996) J Med Chem 39(15):2887Google Scholar
  21. 21.
    R: A Language and Environment for Statistical Computing (2013) R Core Team, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  22. 22.
    Dixon SL, Koehler RT (1999) J Med Chem 42(15):2887CrossRefGoogle Scholar
  23. 23.
    Schuffenhauer A, Brown N, Ertl P, Jenkins JL, Selzer P, Hamon J (2007) J Chem Inf Model 47(2):325CrossRefGoogle Scholar
  24. 24.
    Structure and principles Accessed, http://www.whocc.no/atc/structure_and_principles/
  25. 25.
    Smoot M, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England) 27(3):431–432. doi:10.1093/bioinformatics/btq675
  26. 26.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Y. Jane Tseng
    • 1
    • 2
  • Eric Martin
    • 3
  • Cristian G. Bologa
    • 4
  • Anang A. Shelat
    • 5
  1. 1.Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Novartis Institutes for BioMedical ResearchEmeryvilleUSA
  4. 4.Division of BiocomputingUniversity of New MexicoAlbuquerqueUSA
  5. 5.Department of Chemical Biology and TherapeuticsSaint Jude Children’s Research HospitalMemphisUSA

Personalised recommendations