Journal of Computer-Aided Molecular Design

, Volume 26, Issue 10, pp 1111–1126 | Cite as

Mapping of the interaction sites of galanthamine: a quantitative analysis through pairwise potentials and quantum chemistry

  • Nicolas Galland
  • Soleymane Kone
  • Jean-Yves Le QuestelEmail author


A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31 + G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.


Galanthamine Hydrogen bonding Quantum chemistry Acetylcholinesterase 



This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation c2011085117 made by GENCI (Grand Equipement National de Calcul Intensif). The authors gratefully acknowledge the CCIPL (Centre de Calcul Intensif des Pays de la Loire) for grants of computer time. S. K. thank the AUF (Agence Universitaire de la Francophonie) for financial support and the LCOS (Laboratoire de Chimie Organique Structurale) of Abidjan Cocody University for its help.

Supplementary material

10822_2012_9602_MOESM1_ESM.doc (668 kb)
Supplementary material 1 (DOC 667 kb)
10822_2012_9602_MOESM2_ESM.avi (6.1 mb)
Supplementary material 2 (AVI 6207 kb)
10822_2012_9602_MOESM3_ESM.avi (7.1 mb)
Supplementary material 3 (AVI 7295 kb)


  1. 1.
    Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414CrossRefGoogle Scholar
  2. 2.
    Dunnett SB, Fibiger HC (1993) Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer’s dementia. Prog Brain Res 98:413–420CrossRefGoogle Scholar
  3. 3.
    Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163(2):495–529CrossRefGoogle Scholar
  4. 4.
    Arneric SP, Holladay MW (2000) Agonists and antagonists of nicotinic acetylcholine receptors. Handbook of experimental pharmacology. Neuronal Nicotinic Receptors 144:419–453Google Scholar
  5. 5.
    Bertrand D, Gopalakrishnan M (2007) Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 74:1155–1163CrossRefGoogle Scholar
  6. 6.
    Weinstock M, Razin M, Chorev M, Enz A (1994) Pharmacological evaluation of phenyl-carbamates as CNS-selective acetylcholinesterase inhibitors. J Neural Transmission (Neuroprotection in Neurodegeneration) Supplement 43:219–225Google Scholar
  7. 7.
    Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemistry 41(11):3555–3564CrossRefGoogle Scholar
  8. 8.
    Wang YE, Yue DX, Tang XC (1986) Anti-cholinesterase activity of huperzine A. Acta Pharmacol Sin 7(2):110–113Google Scholar
  9. 9.
    Kozikowski AP, Thiels E, Tang XC, Hanin I (1992) Huperzine A. A possible lead structure in the treatment of Alzheimer’s disease. Adv Med Chem 1:175–205Google Scholar
  10. 10.
    Kawakami Y, Inoue A, Kawai T, Wakita M, Sugimoto H, Hopfinger AJ (1996) The rationale for E2020 as a potent acetylcholinesterase inhibitor. Bioorg Med Chem 4(9):1429–1446CrossRefGoogle Scholar
  11. 11.
    Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure (London) 7(3):297–307CrossRefGoogle Scholar
  12. 12.
    Rogawski MA, Wenk GL (2003) The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 9(3):275–308CrossRefGoogle Scholar
  13. 13.
    Jia P, Sheng R, Zhang J, Fang L, He Q, Yang B, Hu Y (2009) Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 44(2):772–784CrossRefGoogle Scholar
  14. 14.
    Vanlaer S, De Borggraeve WM, Voet A, Gielens C, De Maeyer M, Compernolle F (2008) Spirocyclic pyridoazepine analogues of galanthamine: synthesis, modelling studies and evaluation as inhibitors of acetylcholinesterase. Eur J Org Chem 15:2571–2581CrossRefGoogle Scholar
  15. 15.
    Bartolucci C, Haller LA, Jordis U, Fels G, Lamba D (2010) Probing Torpedo californica acetylcholinesterase catalytic gorge with two novel bis-functional galanthamine derivatives. J Med Chem 53(2):745–751CrossRefGoogle Scholar
  16. 16.
    Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem-Biol Interact 187(1–3):10–22CrossRefGoogle Scholar
  17. 17.
    Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem-Biol Interact 175(1–3):3–10CrossRefGoogle Scholar
  18. 18.
    Nascimento ECM, Martins JBL, dos Santos ML, Gargano R (2008) Theoretical study of classical acetylcholinesterase inhibitors. Chem Phys Lett 458(4–6):285–289CrossRefGoogle Scholar
  19. 19.
    de Paula AAN, Martins JBL, dos Santos ML, Nascente LdC, Romeiro LAS, Areas TFMA, Vieira KST, Gamboa NF, Castro NG, Gargano R (2009) New potential AChE inhibitor candidates. Eur J Med Chem 44(9):3754–3759CrossRefGoogle Scholar
  20. 20.
    Nascimento ECM, Martins JBL (2011) Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors. J Mol Model 17(6):1371–1379CrossRefGoogle Scholar
  21. 21.
    Xu Y, Colletier J-P, Weik M, Jiang H, Moult J, Silman I, Sussman JL (2008) Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys J 95(5):2500–2511CrossRefGoogle Scholar
  22. 22.
    Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3.ANG. resolution. FEBS Lett 463(3):321–326CrossRefGoogle Scholar
  23. 23.
    Greenblatt HM, Guillou C, Guenard D, Argaman A, Botti S, Badet B, Thal C, Silman I, Sussman JL (2004) The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site Gorge: implications for structure-based drug design. J Am Chem Soc 126(47):15405–15411CrossRefGoogle Scholar
  24. 24.
    Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J Mol Biol 296(2):713–735CrossRefGoogle Scholar
  25. 25.
    Xu Y, Shen J, Luo X, Silman I, Sussman JL, Chen K, Jiang H (2003) How does Huperzine A enter and leave the binding Gorge of acetylcholinesterase? Steered molecular dynamics simulations. J Am Chem Soc 125(37):11340–11349CrossRefGoogle Scholar
  26. 26.
    Babakhani A, Talley TT, Taylor P, McCammon JA (2009) A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach. Comput Biol Chem 33(2):160–170CrossRefGoogle Scholar
  27. 27.
    Cheng YH, Cheng XL, Radic Z, McCammon JA (2008) Acetylcholinesterase: mechanisms of covalent inhibition of H447I mutant determined by computational analyses. Chem-Biol Interact 175(1–3):196–199CrossRefGoogle Scholar
  28. 28.
    Cheng YH, Cheng XL, Radic Z, McCammon JA (2007) Acetylcholinesterase: mechanisms of covalent inhibition of wild-type and H447I mutant determined by computational analyses. J Am Chem Soc 129(20):6562–6570CrossRefGoogle Scholar
  29. 29.
    Senapati S, Cheng YH, McCammon JA (2006) In situ synthesis of a tacrine-triazole-based inhibitor of acetylcholinesterase: configurational selection imposed by steric interactions. J Med Chem 49(21):6222–6230CrossRefGoogle Scholar
  30. 30.
    Bui JM, Tai K, McCammon JA (2004) Acetylcholinesterase: enhanced fluctuations and alternative routes to the active site in the complex with Fasciculin-2. J Am Chem Soc 126(23):7198–7205CrossRefGoogle Scholar
  31. 31.
    Kua J, Zhang Y, Eslami AC, Butler JR, McCammon JA (2003) Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci 12(12):2675–2684CrossRefGoogle Scholar
  32. 32.
    Henchman RH, McCammon JA (2002) Structural and dynamic properties of water around acetylcholinesterase. Protein Sci 11(9):2080–2090CrossRefGoogle Scholar
  33. 33.
    Kone S, Galland N, Bamba E-HS, Le Questel J-Y (2008) Hydrogen-bonding properties of galanthamine: an investigation through crystallographic database observations and computational chemistry. Acta Cryst B B64(3):338–347CrossRefGoogle Scholar
  34. 34.
    Kone S, Galland N, Graton J, Illien B, Laurence C, Guillou C, Le Questel J-Y (2006) Structural features of neutral and protonated galanthamine: a crystallographic database and computational investigation. Chem Phys 328(1–3):307–317CrossRefGoogle Scholar
  35. 35.
    Atkinson AP, Baguet E, Galland N, Le Questel JY, Planchat AP, Graton J (2011) Structural features and hydrogen-bond properties of galanthamine and codeine: an experimental and theoretical study. Chem Eur J 17:11637–11649CrossRefGoogle Scholar
  36. 36.
    van Mourik T, Price SL, Clary DC (2001) Diffusion Monte Carlo simulations on uracil-water using an anisotropic atom-atom potential model. Faraday Discus (Cluster Dynamics) 118:95–108Google Scholar
  37. 37.
    Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge distribution. Chem Phys Lett 83(2):233–239CrossRefGoogle Scholar
  38. 38.
    Stone AJ, Alderton M (1985) Distributed multipole analysis methods and applications. Mol Phys 56(5):1047–1064CrossRefGoogle Scholar
  39. 39.
    Rueter LE, Anderson DJ, Briggs CA, Donnelly-Roberts DL, Gintant GA, Gopalakrishnan M, Lin N-H, Osinski MA, Reinhart GA, Buckley MJ, Martin RL, McDermott JS, Preusser LC, Seifert TR, Su Z, Cox BF, Decker MW, Sullivan JP (2004) ABT-089: pharmacological properties of a neuronal nicotinic acetylcholine receptor agonist for the potential treatment of cognitive disorders. CNS Drug Rev 10(2):167–182CrossRefGoogle Scholar
  40. 40.
    Williams DE, Cox SR (1984) Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction. Acta Crystallograph Sect B 40(4):404–417CrossRefGoogle Scholar
  41. 41.
    Mitchell JBO, Price SL (1990) The nature of the N-H O:C hydrogen bond: an intermolecular perturbation theory study of the formamide/formaldehyde complex. J Comput Chem 11(10):1217–1233CrossRefGoogle Scholar
  42. 42.
    Stone JA (2003) GDMA: a program for performing distributed multipole analysis of wavefunctions calculated by the Gaussian system of programs, version 1.3, University of Cambridge (UK)Google Scholar
  43. 43.
    Stone AJDAE, Fraschini E, Hodges MP, Meredith AW, Popelier PLA, Wales DJ (2001) ORIENT, 4.4 edn. University of Cambridge. CambridgeGoogle Scholar
  44. 44.
    Braun DE, Tocher DA, Price SL, Griesser UJ (2012) The complexity of hydration of phloroglucinol: a comprehensive structural and thermodynamic characterization. J Phys Chem B 116(13):3961–3972. doi: 10.1021/jp211948q CrossRefGoogle Scholar
  45. 45.
    Tsuzuki S, Uchimaru T, Mikami M (2012) Magnitude of CH/O interactions between carbohydrate and water. Theoretical Chemistry Accounts 131 (3). doi: 10.1007/s00214-012-1192-0
  46. 46.
    Hamaguchi N, Fusti-Molnar L, Wlodek S (2012) Force-field and quantum-mechanical binding study of selected SAMPL3 host-guest complexes. J Comput Aided Mol Des 26(5):577–582CrossRefGoogle Scholar
  47. 47.
    Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108(33):6908–6918CrossRefGoogle Scholar
  48. 48.
    Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theory Comput 1(3):415–432CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3(1):289–300CrossRefGoogle Scholar
  50. 50.
    Gil A, Branchadell V, Bertran J, Oliva A (2007) CH/pi interactions in DNA and proteins. A theoretical study. J Phys Chem B 111(31):9372–9379CrossRefGoogle Scholar
  51. 51.
    Dkhissi A, Blossey R (2007) Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chem Phys Lett 439(1–3):35–39CrossRefGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, N. KK, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian 03, Revision C02, Gaussian Inc, Wallingford CT, 2004Google Scholar
  53. 53.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566CrossRefGoogle Scholar
  54. 54.
    Xantheas SS (1996) On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J Chem Phys 104(21):8821–8824CrossRefGoogle Scholar
  55. 55.
    Pulay P, Saeboe S (1986) Orbital-invariant formulation and second-order gradient evaluation in Moeller-Plesset perturbation theory. Theor Chim Acta 69(5–6):357–368CrossRefGoogle Scholar
  56. 56.
    Saebo S, Pulay P (1993) Local treatment of electron correlation. Annu Rev Phys Chem 44:213–236CrossRefGoogle Scholar
  57. 57.
    Saebo S, Tong W, Pulay P (1993) Efficient elimination of basis-set-superposition errors by the local correlation method: accurate ab initio studies of the water dimer. J Chem Phys 98(3):2170–2175CrossRefGoogle Scholar
  58. 58.
    Hampel C, Werner H-J (1996) Local treatment of electron correlation in coupled cluster theory. J Chem Phys 104(16):6286–6297CrossRefGoogle Scholar
  59. 59.
    Pedulla JM, Vila F, Jordan KD (1996) Binding energy of the ring form of (H2O)6: comparison of the predictions of conventional and localized-orbital MP2 calculations. J Chem Phys 105(24):11091–11099CrossRefGoogle Scholar
  60. 60.
    Hill JG, Platts JA, Werner H-J (2006) Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. Phys Chem Chem Phys 8(35):4072–4078CrossRefGoogle Scholar
  61. 61.
    Jaguar, version 7.0 (2007) Schrödinger, LLC, New YorkGoogle Scholar
  62. 62.
    Xantheas SS (1994) Ab initio studies of cyclic water clusters (H2O)n, n = 1-6. II. Analysis of many-body interactions. J Chem Phys 100(10):7523–7534CrossRefGoogle Scholar
  63. 63.
    Delano WL (2004) The Pymol molecular graphics system, Delano Scientific, San Carlos
  64. 64.
    Bartolucci C, Perola E, Pilger C, Fels G, Lamba D (2001) Three-dimensional structure of a complex of galanthamine (nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs. Proteins Struct Funct Genet 42(2):182–191Google Scholar
  65. 65.
    Stanca-Kaposta EC, Gamblin DP, Cocinero EJ, Frey J, Kroemer RT, Fairbanks AJ, Davis BG, Simons JP (2008) Solvent interactions and conformational choice in a core N-glycan segment: gas phase conformation of the central, branching Trimannose unit and its singly hydrated complex. J Am Chem Soc 130(32):10691–10696CrossRefGoogle Scholar
  66. 66.
    van Mourik T (2008) Assessment of density functionals for intramolecular dispersion-rich interactions. J Chem Theory Comput 4(10):1610–1619CrossRefGoogle Scholar
  67. 67.
    Jensen F (2010) An atomic counterpoise method for estimating inter- and intramolecular basis set superposition errors. J Chem Theory Comput 6(1):100–106CrossRefGoogle Scholar
  68. 68.
    Schuetz M, Rauhut G, Werner H-J (1998) Local treatment of electron correlation in molecular clusters: structures and stabilities of (H2O)n, n = 2–4. J Phys Chem A 102(29):5997–6003CrossRefGoogle Scholar
  69. 69.
    Sponer J, Riley KE, Hobza P (2008) Nature and magnitude of aromatic stacking of nucleic acid bases. Phys Chem Chem Phys 10(19):2595–2610CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nicolas Galland
    • 1
  • Soleymane Kone
    • 2
  • Jean-Yves Le Questel
    • 1
    Email author
  1. 1.UMR CNRS 6230, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UFR Sciences & TechniquesUniversité de NantesNANTES Cedex 3France
  2. 2.Laboratoire de Chimie Organique Structurale, UFR SSMTUniversité d’Abidjan-CocodyAbidjan 02Ivory Coast

Personalised recommendations