Advertisement

Journal of Computer-Aided Molecular Design

, Volume 26, Issue 8, pp 935–945 | Cite as

Using halogen bonds to address the protein backbone: a systematic evaluation

  • Rainer Wilcken
  • Markus O. Zimmermann
  • Andreas Lange
  • Stefan Zahn
  • Frank M. Boeckler
Article

Abstract

Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein–ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl–halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.

Keywords

Sigma hole Halogen bonding Molecular recognition Protein backbone QM-based interaction geometries Medicinal chemistry 

References

  1. 1.
    Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170(3957):497–502. doi: 10.1126/science.170.3957.497 CrossRefGoogle Scholar
  2. 2.
    Pierangelo M, Franck M, Tullio P, Giuseppe R, Giancarlo T (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47(33):6114–6127. doi: 10.1002/anie.200800128 CrossRefGoogle Scholar
  3. 3.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101(48):16789–16794. doi: 10.1073/pnas.0407607101 CrossRefGoogle Scholar
  4. 4.
    Clark T, Hennemann M, Murray J, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Mod 13(2):291–296. doi: 10.1007/s00894-006-0130-2 CrossRefGoogle Scholar
  5. 5.
    Murray J, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Mod 15(6):723–729. doi: 10.1007/s00894-008-0386-9 CrossRefGoogle Scholar
  6. 6.
    Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107(12):2286–2292. doi: 10.1002/qua.21352 CrossRefGoogle Scholar
  7. 7.
    Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: σ-hole bonding. Aust J Chem 63(12):1598–1607. doi: 10.1071/CH10259 CrossRefGoogle Scholar
  8. 8.
    Politzer P, Lane P, Concha M, Ma Y, Murray J (2007) An overview of halogen bonding. J Mol Mod 13(2):305–311. doi: 10.1007/s00894-006-0154-7 CrossRefGoogle Scholar
  9. 9.
    Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12(18):4543–4551. doi: 10.1039/B926326H CrossRefGoogle Scholar
  10. 10.
    Huber K, Brault L, Fedorov O, Gasser C, Filippakopoulos P, Bullock AN, Fabbro D, Trappe J, Schwaller J, Knapp S, Bracher F (2012) 7,8-dichloro-1-oxo-beta-carbolines as a versatile scaffold for the development of potent and selective kinase inhibitors with unusual binding modes. J Med Chem 55(1):403–413. doi: 10.1021/jm201286z CrossRefGoogle Scholar
  11. 11.
    Fedorov O, Huber K, Eisenreich A, Filippakopoulos P, King O, Bullock AN, Szklarczyk D, Jensen LJ, Fabbro D, Trappe J, Rauch U, Bracher F, Knapp S (2011) Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol 18(1):67–76. doi: 10.1016/j.chembiol.2010.11.009 CrossRefGoogle Scholar
  12. 12.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein–ligand interactions. Angew Chem Int Ed 50(1):314–318. doi: 10.1002/anie.201006781 CrossRefGoogle Scholar
  13. 13.
    Xu Z, Liu Z, Chen T, Wang Z, Tian G, Shi J, Wang X, Lu Y, Yan X, Wang G, Jiang H, Chen K, Wang S, Xu Y, Shen J, Zhu W (2011) Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem 54(15):5607–5611. doi: 10.1021/jm200644r CrossRefGoogle Scholar
  14. 14.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Isshiki Y, Morikami K, Shimma N, Haap W, Banner DW, Diederich F (2011) Halogen bonding at the active sites of human cathepsin L and MEK1 kinase: efficient interactions in different environments. ChemMedChem 6(11):2048–2054. doi: 10.1002/cmdc.201100353 CrossRefGoogle Scholar
  15. 15.
    Wilcken R, Liu X, Zimmermann MO, Rutherford TJ, Fersht AR, Joerger AC, Boeckler FM (2012) Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Am Chem Soc 134(15):6810–6818. doi: 10.1021/ja301056a CrossRefGoogle Scholar
  16. 16.
    Joerger AC, Ang HC, Fersht AR (2006) Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 103(41):15056–15061. doi: 10.1073/pnas.0607286103 CrossRefGoogle Scholar
  17. 17.
    Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR (2008) Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 105(30):10360–10365. doi: 10.1073/pnas.0805326105 CrossRefGoogle Scholar
  18. 18.
    Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4(2):232–242. doi: 10.1021/ct700216w CrossRefGoogle Scholar
  19. 19.
    Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br–O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5(1):155–163. doi: 10.1021/ct8004134 CrossRefGoogle Scholar
  20. 20.
    Wilcken R, Zimmermann MO, Lange A, Zahn S, Kirchner B, Boeckler FM (2011) Addressing methionine in molecular design through directed sulfur-halogen bonds. J Chem Theory Comput 7(7):2307–2315. doi: 10.1021/Ct200245e CrossRefGoogle Scholar
  21. 21.
    Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding, a novel interaction for rational drug design? J Med Chem 52(9):2854–2862. doi: 10.1021/jm9000133 CrossRefGoogle Scholar
  22. 22.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757. doi: 10.1039/C004189K CrossRefGoogle Scholar
  23. 23.
    Politzer P, Murray JS, Lane P (2007) Sigma-hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107(15):3046–3052. doi: 10.1002/qua.21419 CrossRefGoogle Scholar
  24. 24.
    Shields ZP, Murray JS, Politzer P (2010) Directional tendencies of halogen and hydrogen bonds. Int J Quantum Chem 110(15):2823–2832. doi: 10.1002/qua.22787 CrossRefGoogle Scholar
  25. 25.
    Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1(1):74–79. doi: 10.1038/nchem.112 CrossRefGoogle Scholar
  26. 26.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. doi: 10.1039/B508541A CrossRefGoogle Scholar
  27. 27.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169. doi: 10.1016/0009-2614(89)85118-8 CrossRefGoogle Scholar
  28. 28.
    TURBOMOLE v6.2 (2010), available from http://www.turbomole.com
  29. 29.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119(21):11113–11123. doi: 10.1063/1.1622924 CrossRefGoogle Scholar
  30. 30.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208(5–6):359–363. doi: 10.1016/0009-2614(93)87156-w CrossRefGoogle Scholar
  31. 31.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294(1–3):143–152. doi: 10.1016/s0009-2614(98)00862-8 CrossRefGoogle Scholar
  32. 32.
    Hättig C (2005) Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: core-valence and quintuple-z basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys Chem Chem Phys 7(1):59–66. doi: 10.1039/B415208E CrossRefGoogle Scholar
  33. 33.
    Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117(4):587–597. doi: 10.1007/s00214-007-0250-5 CrossRefGoogle Scholar
  34. 34.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi: 10.1080/00268977000101561 CrossRefGoogle Scholar
  35. 35.
    Grimme S (2003) Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118(20):9095–9102. doi: 10.1063/1.1569242 CrossRefGoogle Scholar
  36. 36.
    Dunning JTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023. doi: 10.1063/1.456153 CrossRefGoogle Scholar
  37. 37.
    Woon DE, Dunning JTH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371. doi: 10.1063/1.464303 CrossRefGoogle Scholar
  38. 38.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110(51):13877–13883. doi: 10.1021/jp065887l CrossRefGoogle Scholar
  39. 39.
    Weigend F, Kohn A, Hättig C (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116(8):3175–3183. doi: 10.1063/1.1445115 CrossRefGoogle Scholar
  40. 40.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO, version 2006.1, a package of ab initio programs; http://www.molpro.net
  41. 41.
    Hobza P, Šponer J (2002) Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. J Am Chem Soc 124(39):11802–11808. doi: 10.1021/ja026759n CrossRefGoogle Scholar
  42. 42.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8(17):1985–1993. doi: 10.1039/B600027D CrossRefGoogle Scholar
  43. 43.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286(3–4):243–252. doi: 10.1016/s0009-2614(98)00111-0 CrossRefGoogle Scholar
  44. 44.
    DeLano WL (2008) The PyMOL molecular graphics system. DeLano Scientific LLC, Palo Alto, CAGoogle Scholar
  45. 45.
    Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2012) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model. doi: 10.1007/s00894-012-1428-x
  46. 46.
    Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) Polarization-induced sigma-holes and hydrogen bonding. J Mol Mod 18(6):2461–2469. doi: 10.1007/s00894-011-1263-5 CrossRefGoogle Scholar
  47. 47.
    Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor–coactivator interactions. Genes Dev 12(21):3343–3356. doi: 10.1101/gad.12.21.3343 CrossRefGoogle Scholar
  48. 48.
    Horton JR, Sawada K, Nishibori M, Cheng X (2005) Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J Mol Biol 353(2):334–344. doi: 10.1016/j.jmb.2005.08.040 CrossRefGoogle Scholar
  49. 49.
    Tipparaju SK, Mulhearn DC, Klein GM, Chen Y, Tapadar S, Bishop MH, Yang S, Chen J, Ghassemi M, Santarsiero BD, Cook JL, Johlfs M, Mesecar AD, Johnson ME, Kozikowski AP (2008) Design and synthesis of aryl ether inhibitors of the Bacillus Anthracis enoyl-ACP reductase. ChemMedChem 3(8):1250–1268. doi: 10.1002/cmdc.200800047 CrossRefGoogle Scholar
  50. 50.
    De Moliner E, Brown NR, Johnson LN (2003) Alternative binding modes of an inhibitor to two different kinases. Eur J Biochem 270(15):3174–3181. doi: 10.1046/j.1432-1033.2003.03697.x CrossRefGoogle Scholar
  51. 51.
    Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA (2005) Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem Biol 12(11):1211–1219. doi: 10.1016/j.chembiol.2005.08.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rainer Wilcken
    • 1
    • 3
  • Markus O. Zimmermann
    • 1
  • Andreas Lange
    • 1
  • Stefan Zahn
    • 2
  • Frank M. Boeckler
    • 1
  1. 1.Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyEberhard-Karls-University TübingenTübingenGermany
  2. 2.Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLeipzigGermany
  3. 3.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations