Journal of Computer-Aided Molecular Design

, Volume 26, Issue 6, pp 787–799 | Cite as

Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide

  • Matthew P. Repasky
  • Robert B. Murphy
  • Jay L. Banks
  • Jeremy R. Greenwood
  • Ivan Tubert-Brohman
  • Sathesh Bhat
  • Richard A. Friesner
Article

Abstract

Glide SP mode enrichment results for two preparations of the DUD dataset and native ligand docking RMSDs for two preparations of the Astex dataset are presented. Following a best-practices preparation scheme, an average RMSD of 1.140 Å for native ligand docking with Glide SP is computed. Following the same best-practices preparation scheme for the DUD dataset an average area under the ROC curve (AUC) of 0.80 and average early enrichment via the ROC (0.1 %) metric of 0.12 were observed. 74 and 56 % of the 39 best-practices prepared targets showed AUC over 0.7 and 0.8, respectively. Average AUC was greater than 0.7 for all best-practices protein families demonstrating consistent enrichment performance across a broad range of proteins and ligand chemotypes. In both Astex and DUD datasets, docking performance is significantly improved employing a best-practices preparation scheme over using minimally-prepared structures from the PDB. Enrichment results for WScore, a new scoring function and sampling methodology integrating WaterMap and Glide, are presented for four DUD targets, hivrt, hsp90, cdk2, and fxa. WScore performance in early enrichment is consistently strong and all systems examined show AUC > 0.9 and superior early enrichment to DUD best-practices Glide SP results.

Keywords

Docking Virtual screening DUD Astex WScore WaterMap Glide 

References

  1. 1.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin P (2004) J Med Chem 47(7):1739–1749CrossRefGoogle Scholar
  2. 2.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750–1759CrossRefGoogle Scholar
  3. 3.
    Hartshorn MJ, Verkonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) J Med Chem 50(4):726–741CrossRefGoogle Scholar
  4. 4.
    Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49(23):6789–6801CrossRefGoogle Scholar
  5. 5.
    Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130(9):2817–2831CrossRefGoogle Scholar
  6. 6.
    Vagin A, Steiner R, Lebedev A, Potterton L, McNicholas S, Long F, Murshudov G (2004) Acta Cryst D60:2284–2295Google Scholar
  7. 7.
    Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285(4):1735–1747CrossRefGoogle Scholar
  8. 8.
    Wlodek S, Skillman AG, Nicholls A (2010) J Chem Theory Comput 6(7):2140–2152CrossRefGoogle Scholar
  9. 9.
    Halgren TA (1999) J Comp Chem 20(7):720–729CrossRefGoogle Scholar
  10. 10.
    Maestro v9.2. Schrödinger LLC. New YorkGoogle Scholar
  11. 11.
  12. 12.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  13. 13.
    Prime v3.0. Schrödinger LLC. New YorkGoogle Scholar
  14. 14.
    MOE. Chemical Computing Group, Inc. MontrealGoogle Scholar
  15. 15.
    LigPrep v2.5. Schrödinger LLC. New YorkGoogle Scholar
  16. 16.
    Jorissen RN, Gilson MK (2005) J Chem Inf Model 45(3):549–561CrossRefGoogle Scholar
  17. 17.
    Epik v2.2. Schrödinger LLC. New YorkGoogle Scholar
  18. 18.
    Macromodel v9.9. Schrödinger LLC. New YorkGoogle Scholar
  19. 19.
    Glide v5.7. Schrödinger LLC. New YorkGoogle Scholar
  20. 20.
    Sherman W, Beard HS, Farid R (2006) Chem Biol Drug Des 67:83–84CrossRefGoogle Scholar
  21. 21.
    Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) J Med Chem 49:534–554CrossRefGoogle Scholar
  22. 22.
    Young T, Abel R, Kim B, Berne B, Friesner RA (2007) PNAS 104:808–813CrossRefGoogle Scholar
  23. 23.
    Abel R, Young T, Farid R, Berne B, Friesner RA (2008) J Am Chem Soc 130:2817–2831CrossRefGoogle Scholar
  24. 24.
    Beuming T, Farid R, Sherman W (2009) Protein Sci 18:1609–1619CrossRefGoogle Scholar
  25. 25.
    Pearlstein R, Hu Q, Zhou J, Yowe D, Levell J, Dale B, Kaushik V, Daniels D, Hanrahan S, Sherman W, Abel R (2010) Proteins 78:2571–2586Google Scholar
  26. 26.
    Higgs C, Beuming T, Sherman W (2010) ACS Med Chem Lett 1:160–164CrossRefGoogle Scholar
  27. 27.
    Robinson D, Sherman W, Farid R (2010) Chem Med Chem 5:618–627Google Scholar
  28. 28.
    Abel R, Salam N, Shelley J, Farid R, Friesner RA, Sherman W (2011) Chem Med Chem 6:1049–1066Google Scholar
  29. 29.
    Lazaridis T (1998) J Phys Chem B 102:3531–3541CrossRefGoogle Scholar
  30. 30.
    Lazaridis T, Karplus M (1996) J Chem Phys 105:4294–4316CrossRefGoogle Scholar
  31. 31.
    Lazaridis T, Paulatis ME (1992) J Phys Chem 96:3847–3855CrossRefGoogle Scholar
  32. 32.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49(21):6177–6196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Matthew P. Repasky
    • 1
  • Robert B. Murphy
    • 1
  • Jay L. Banks
    • 2
  • Jeremy R. Greenwood
    • 2
  • Ivan Tubert-Brohman
    • 2
  • Sathesh Bhat
    • 2
  • Richard A. Friesner
    • 3
  1. 1.Schrödinger, LLCPortlandUSA
  2. 2.Schrödinger, LLCNew YorkUSA
  3. 3.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations