Advertisement

Journal of Computer-Aided Molecular Design

, Volume 26, Issue 4, pp 437–450 | Cite as

Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

  • Anders Poulsen
  • Anthony William
  • Stéphanie Blanchard
  • Angeline Lee
  • Harish Nagaraj
  • Haishan Wang
  • Eeling Teo
  • Evelyn Tan
  • Kee Chuan Goh
  • Brian Dymock
Article

Abstract

Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

Keywords

JAK2 FLT3 Inhibitor Structure-based design Docking Subtype selectivity 

References

  1. 1.
    Rawlings JS, Rosler KM, Harrison DA (2004) J Cell Sci 117:1281CrossRefGoogle Scholar
  2. 2.
    Bennett M, Stroncek DF (2006) J Transl Med 4:41CrossRefGoogle Scholar
  3. 3.
    Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF (1992) Oncogene 7:1347Google Scholar
  4. 4.
    Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P (1997) Blood 90:2535Google Scholar
  5. 5.
    Levine RL, Pardanani A, Tefferi A, Gilliland DG (2007) Nat Rev Cancer 7:673CrossRefGoogle Scholar
  6. 6.
    Campbell PJ, Griesshammer M, Dohner K, Dohner H, Kusec R, Hasselbalch HC, Larsen TS, Pallisgaard N, Giraudier S, Le Bousse-Kerdiles MC, Desterke C, Guerton B, Dupriez B, Bordessoule D, Fenaux P, Kiladjian JJ, Viallard JF, Briere J, Harrison CN, Green AR, Reilly JT (2006) Blood 107:2098CrossRefGoogle Scholar
  7. 7.
    Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, Skoda RC (2006) Blood 108:1377CrossRefGoogle Scholar
  8. 8.
    McLornan D, Percy M, McMullin MF (2006) Ulster Med J 75:112Google Scholar
  9. 9.
    Apostolidou E, Kantarjian HM, Verstovsek S (2009) Clin Lymphoma Myeloma 9(Suppl 3):S340Google Scholar
  10. 10.
    Atallah E, Verstovsek S (2009) Expert Rev Anticancer Ther 9:663CrossRefGoogle Scholar
  11. 11.
    Hitoshi Y, Lin N, Payan DG, Markovtsov V (2010) Int J Hematol 91:189CrossRefGoogle Scholar
  12. 12.
    Verstovsek S (2009) Hematol Am Soc Hematol Educ Program 2009:636Google Scholar
  13. 13.
    Schafer AI (2006) Blood 107:4214CrossRefGoogle Scholar
  14. 14.
    William AD, Lee A, Goh KC, Blanchard S, Poulsen A, Teo EL, Nagaraj H, Lee C, Wang H, Williams M, Sun ET, Hu C, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW (2011) J Med Chem 55:169–196Google Scholar
  15. 15.
    http://www.schrodinger.com. Schrödinger, LLC, New York (2009)
  16. 16.
    Chang G, Guida WC, Still WC (1989) J Am Chem Soc 111:4379CrossRefGoogle Scholar
  17. 17.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225CrossRefGoogle Scholar
  18. 18.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474CrossRefGoogle Scholar
  19. 19.
    Hasel WH, Hendrickson TF, Still WC (1988) Tetrahedron Comput Method 1:103CrossRefGoogle Scholar
  20. 20.
    Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS (2009) J Mol Biol 387:219CrossRefGoogle Scholar
  21. 21.
    Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE, Walter M, Burns CJ, Treutlein H, Wilks AF, Rossjohn J (2006) Blood 107:176CrossRefGoogle Scholar
  22. 22.
    Boggon TJ, Li Y, Manley PW, Eck MJ (2005) Blood 106:996CrossRefGoogle Scholar
  23. 23.
    Chrencik JE, Patny A, Leung IK, Korniski B, Emmons TL, Hall T, Weinberg RA, Gormley JA, Williams JM, Day JE, Hirsch JL, Kiefer JR, Leone JW, Fischer HD, Sommers CD, Huang HC, Jacobsen EJ, Tenbrink RE, Tomasselli AG, Benson TE (2010) J Mol Biol 400:413CrossRefGoogle Scholar
  24. 24.
    Lawrie AM, Noble ME, Tunnah P, Brown NR, Johnson LN, Endicott JA (1997) Nat Struct Biol 4:796CrossRefGoogle Scholar
  25. 25.
    Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K (2004) Mol Cell 13:169CrossRefGoogle Scholar
  26. 26.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235CrossRefGoogle Scholar
  27. 27.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Nucleic Acids Res 31:3784CrossRefGoogle Scholar
  28. 28.
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Nucleic Acids Res 31:3497CrossRefGoogle Scholar
  29. 29.
    Jones DT (1999) J Mol Biol 292:195CrossRefGoogle Scholar
  30. 30.
    Pollastri G, Przybylski D, Rost B, Baldi P (2002) Proteins 47:228CrossRefGoogle Scholar
  31. 31.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127CrossRefGoogle Scholar
  32. 32.
    Bostrom J, Norrby PO, Liljefors T (1998) J Comput Aided Mol Des 12:383CrossRefGoogle Scholar
  33. 33.
    Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Honig B, Ringnalda M, Goddard WA (1994) J Am Chem Soc 116:11875CrossRefGoogle Scholar
  34. 34.
    GraphPad. In: GraphPad Software, La Jolla (2009)Google Scholar
  35. 35.
    Bryant J, Kochanny M, Yuan S, Khim S-K, Buckman B, Arnaiz D, Bomer U, Breim H, Esperling P, Huwe C, Kuhnke J, Schafer M, Wortmann L, Kosemund D, Eckle E, Feldman R, Phillips G (2004) In: Schering AktiengesellschaftGoogle Scholar
  36. 36.
    Burns CJ, Bourke DG, Andrau L, Bu X, Charman SA, Donohue AC, Fantino E, Farrugia M, Feutrill JT, Joffe M, Kling MR, Kurek M, Nero TL, Nguyen T, Palmer JT, Phillips I, Shackleford DM, Sikanyika H, Styles M, Su S, Treutlein H, Zeng J, Wilks AF (2009) Bioorg Med Chem Lett 19:5887CrossRefGoogle Scholar
  37. 37.
    Cao JJ, Hood J, Lohse D, Mak CC, McPherson A, Noronha G, Pathak V, Renick J, Soll R, Zeng B 92007) In: Targegen, IncGoogle Scholar
  38. 38.
    William AD, Lee AC, Blanchard S, Poulsen A, Teo EL, Nagaraj H, Tan E, Chen D, Williams M, Sun ET, Goh KC, Ong WC, Goh SK, Hart S, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW (2011) J Med Chem 54:4638CrossRefGoogle Scholar
  39. 39.
    William AD, Lee AC, Poulsen A, Goh KC, Madan B, Hart S, Tan E, Wang H, Nagaraj H, Chen D, Lee CP, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW (2012) J Med Chem 55:2623–2640Google Scholar
  40. 40.
    Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, Madan B, Amalini C, Loh YK, Ong LC, William AD, Lee A, Poulsen A, Jayaraman R, Ong KH, Ethirajulu K, Dymock BW, Wood JW (2011) Leukemia 25:1751Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Anders Poulsen
    • 1
  • Anthony William
    • 1
  • Stéphanie Blanchard
    • 1
  • Angeline Lee
    • 1
  • Harish Nagaraj
    • 1
  • Haishan Wang
    • 1
  • Eeling Teo
    • 1
  • Evelyn Tan
    • 1
  • Kee Chuan Goh
    • 1
  • Brian Dymock
    • 1
  1. 1.S*BIO Pte LtdSingaporeSingapore

Personalised recommendations