Journal of Computer-Aided Molecular Design

, Volume 26, Issue 3, pp 319–327 | Cite as

A reverse combination of structure-based and ligand-based strategies for virtual screening

  • Álvaro Cortés-Cabrera
  • Federico Gago
  • Antonio Morreale


A new approach is presented that combines structure- and ligand-based virtual screening in a reverse way. Opposite to the majority of the methods, a docking protocol is first employed to prioritize small ligands (“fragments”) that are subsequently used as queries to search for similar larger ligands in a database. For a given chemical library, a three-step strategy is followed consisting of (1) contraction into a representative, non-redundant, set of fragments, (2) selection of the three best-scoring fragments docking into a given macromolecular target site, and (3) expansion of the fragments’ structures back into ligands by using them as queries to search the library by means of fingerprint descriptions and similarity criteria. We tested the performance of this approach on a collection of fragments and ligands found in the ZINC database and the directory of useful decoys, and compared the results with those obtained using a standard docking protocol. The new method provided better overall results and was several times faster. We also studied the chemical diversity that both methods cover using an in-house compound library and concluded that the novel approach performs similarly but at a much smaller computational cost.


Fragment screening Structure-based virtual screening Ligand-based virtual screening Docking Drug design 



This work was supported by grants from Ministerio de Ciencia e Innovación (MICINN) BIO2008-04384 (to Antonio Morreale) and SAF2009-13914-C02-02 (to Federico Gago), and Comunidad Autónoma de Madrid (CAM) S-BIO-0214-2006 (BIPEDD) and S2010-BMD-2457 (BIPEDD-2). Antonio Morreale acknowledges CAM for financial support to the Fundación Severo Ochoa through the AMAROUTO program. Álvaro Cortés-Cabrera thanks Ministerio de Educación for the FPU Grant AP2009-0203. We are grateful to OpenEye Scientific Software, Inc. for providing us with an academic license for their software. The technical support and advice from the Bioinformatics team at CBMSO is gratefully acknowledged.

Supplementary material

10822_2012_9558_MOESM1_ESM.doc (96 kb)
Supplementary material 1 (DOC 95 kb)


  1. 1.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534CrossRefGoogle Scholar
  2. 2.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219. doi: 10.1038/nrd2220 CrossRefGoogle Scholar
  3. 3.
    Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432(7019):855–861. doi: 10.1038/nature03193 CrossRefGoogle Scholar
  4. 4.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864. doi: 10.1021/ci000403i CrossRefGoogle Scholar
  5. 5.
    Schuffenhauer A, Ruedisser S, Marzinzik AL, Jahnke W, Blommers M, Selzer P, Jacoby E (2005) Library design for fragment based screening. Curr Top Med Chem 5(8):751–762CrossRefGoogle Scholar
  6. 6.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi: 10.1021/ci049714+ CrossRefGoogle Scholar
  7. 7.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26CrossRefGoogle Scholar
  8. 8.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801. doi: 10.1021/jm0608356 CrossRefGoogle Scholar
  9. 9.
    Perez C, Ortiz AR (2001) Evaluation of docking functions for protein-ligand docking. J Med Chem 44(23):3768–3785CrossRefGoogle Scholar
  10. 10.
    PDB IDs 1GPK, 1HWW, 1IA1, 1JD0, 1J3J, 1HNN, 1HQ2, 1IG3, 1K3V, 1LRH, 1N1M, 1N2V, 1OF1, 1OF6, 1OWE, 1P2Y, 1P62, 1Q1G, 1Q41, 1Q4G, 1R9O, 1SG0, 1SQW, 1TOW, 1TT1, 1TZ8, 1UIC, 1U4D, 1UOU, 1W1P, 1W2G, 1X8X, and 1XM6Google Scholar
  11. 11.
    Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50(4):726–741. doi: 10.1021/jm061277y CrossRefGoogle Scholar
  12. 12.
    Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36. doi: 10.1021/ci00057a005 CrossRefGoogle Scholar
  13. 13.
    Open Babel (2011) The open source chemistry toolbox. Accessed 01 March 2012
  14. 14.
    Corina (2000) Computerchemie Langemarckplatz 1 E, Germany, MNGGoogle Scholar
  15. 15.
    Stewart JJP (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4(1):1–103. doi: 10.1007/bf00128336 CrossRefGoogle Scholar
  16. 16.
    Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi: 10.1002/jcc.20290 CrossRefGoogle Scholar
  17. 17.
    Gil-Redondo R (2006) Master thesis UNED, MadridGoogle Scholar
  18. 18.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32(Web Server issue):W665–W667. doi: 10.1093/nar/gkh381 CrossRefGoogle Scholar
  19. 19.
    Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 13(6):547–562CrossRefGoogle Scholar
  20. 20.
    Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The chemistry development kit (CDK): an open-source Java library for chemo- and bio-informatics. J Chem Inf Comput Sci 43(2):493–500. doi: 10.1021/ci025584y CrossRefGoogle Scholar
  21. 21.
    Voigt JH, Bienfait B, Wang S, Nicklaus MC (2001) Comparison of the NCI Open Database with Seven Large Chemical Structural Databases. J Chem Inf Comput Sci 41(3):702–712. doi: 10.1021/ci000150t CrossRefGoogle Scholar
  22. 22.
    Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold–Hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38(19):2894–2896CrossRefGoogle Scholar
  23. 23.
    Sandor M, Kiss R, Keseru GM (2010) Virtual fragment docking by Glide: a validation study on 190 protein-fragment complexes. J Chem Inf Model 50(6):1165–1172. doi: 10.1021/ci1000407 CrossRefGoogle Scholar
  24. 24.
    Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW (2011) Docking performance of fragments and druglike compounds. J Med Chem 54(15):5422–5431. doi: 10.1021/jm200558u CrossRefGoogle Scholar
  25. 25.
    Lin FY, Tseng YJ (2011) Structure-based fragment hopping for lead optimization using predocked fragment database. J Chem Inf Model 51(7):1703–1715. doi: 10.1021/ci200136j CrossRefGoogle Scholar
  26. 26.
    Moriaud F, Doppelt-Azeroual O, Martin L, Oguievetskaia K, Koch K, Vorotyntsev A, Adcock SA, Delfaud F (2009) Computational fragment-based approach at PDB scale by protein local similarity. J Chem Inf Model 49(2):280–294. doi: 10.1021/ci8003094 CrossRefGoogle Scholar
  27. 27.
    Durrant JD, Friedman AJ, McCammon JA (2011) CrystalDock: a novel approach to fragment-based drug design. J Chem Inf Model 51(10):2573–2580. doi: 10.1021/ci200357y CrossRefGoogle Scholar
  28. 28.
    Cabrera AC, Gil-Redondo R, Perona A, Gago F, Morreale A (2011) VSDMIP 1.5: an automated structure- and ligand-based virtual screening platform with a PyMOL graphical user interface. J Comput Aided Mol Des 25(9):813–824. doi: 10.1007/s10822-011-9465-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Álvaro Cortés-Cabrera
    • 1
    • 2
  • Federico Gago
    • 1
  • Antonio Morreale
    • 2
  1. 1.Departamento de FarmacologíaUniversidad de AlcaláAlcalá de Henares, MadridSpain
  2. 2.Unidad de BioinformáticaCentro de Biología Molecular Severo Ochoa (CSIC/UAM)MadridSpain

Personalised recommendations