Journal of Computer-Aided Molecular Design

, Volume 26, Issue 6, pp 725–735 | Cite as

Lead Finder docking and virtual screening evaluation with Astex and DUD test sets

  • Fedor N. Novikov
  • Viktor S. Stroylov
  • Alexey A. Zeifman
  • Oleg V. Stroganov
  • Val Kulkov
  • Ghermes G. Chilov
Article

Abstract

Lead Finder is a molecular docking software. Sampling uses an original implementation of the genetic algorithm that involves a number of additional optimization procedures. Lead Finder’s scoring functions employ a set of semi-empiric molecular mechanics functionals that have been parameterized independently for docking, binding energy predictions and rank-ordering for virtual screening. Sampling and scoring both utilize a staged approach, moving from fast but less accurate algorithm versions to computationally more intensive but more accurate versions. Lead Finder includes tools for the preparation of full atom protein and ligand models. In this exercise, Lead Finder achieved 72.9% docking success rate on the Astex test set when the original author-prepared full atom models were used, and 74.1% success rate when the structures were prepared by Lead Finder. The major cause of docking failures were scoring errors resulting from the use of imperfect solvation models. In many cases, docking errors could be corrected by the proper protonation and the use of correct cyclic conformations of ligands. In virtual screening experiments on the DUD test set the early enrichment factor of several tens was achieved on average. However, the area under the ROC curve (“AUC ROC”) ranged from 0.70 to 0.74 depending on the screening protocol used, and the separation from the null model was not perfect—0.12–0.15 units of AUC ROC. We assume that effective virtual screening in the whole range of enrichment curve and not just at the early enrichment stages requires more accurate solvation modeling and accounting for the protein backbone flexibility.

Keywords

Lead Finder Docking Virtual screening Benchmarks Astex DUD 

Notes

Acknowledgments

The work was supported by the Foundation for assistance to small enterprises in the scientific area (Contract 8175p/7168).

Supplementary material

10822_2012_9549_MOESM1_ESM.doc (280 kb)
Supplementary material 1 (DOC 280 kb)

References

  1. 1.
    Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50(4):726–741. doi:10.1021/jm061277y CrossRefGoogle Scholar
  2. 2.
    Nissink JW, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R (2002) A new test set for validating predictions of protein-ligand interaction. Proteins 49(4):457–471. doi:10.1002/prot.10232 CrossRefGoogle Scholar
  3. 3.
    Smith RD, Dunbar JB, Ung PM, Esposito EX, Yang CY, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model. doi:10.1021/ci200269q Google Scholar
  4. 4.
    Novikov FN, Zeifman AA, Stroganov OV, Stroylov VS, Kulkov V, Chilov GG (2011) CSAR scoring challenge reveals the need for new concepts in estimating protein-ligand binding affinity. J Chem Inf Model. doi:10.1021/ci200034y Google Scholar
  5. 5.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n CrossRefGoogle Scholar
  6. 6.
    The CCDC/Astex Test Set. http://www.ccdc.cam.ac.uk/products/life_sciences/gold/validation/astex. Accessed 8 September, 2011
  7. 7.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801. doi:10.1021/jm0608356 CrossRefGoogle Scholar
  8. 8.
    DUD—A directory of useful decoys. http://dud.docking.org/ Accessed 14 September, 2011
  9. 9.
    Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474. doi:10.1021/ci900056c CrossRefGoogle Scholar
  10. 10.
    Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chem Inf Model 48(12):2371–2385. doi:10.1021/ci800166p CrossRefGoogle Scholar
  11. 11.
    Good AC, Oprea TI (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J Comput Aided Mol Des 22(3–4):169–178. doi:10.1007/s10822-007-9167-2 CrossRefGoogle Scholar
  12. 12.
    BuildModel, utility to prepare protein model for docking. http://moltech.ru/_downloads/download.php?dl=2 Accessed 8 September, 2011
  13. 13.
    Stroganov OV, Novikov FN, Zeifman AA, Stroylov VS, Chilov GG (2011) TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins. Proteins 79(9):2693–2710. doi:10.1002/prot.23099 CrossRefGoogle Scholar
  14. 14.
    Lead Finder user manual. http://www.moltech.ru/_downloads/leadfinder_usermanual.pdf. Accessed 8 September, 2011
  15. 15.
    Novikov FN, Stroylov VS, Stroganov OV, Chilov GG (2010) Improving performance of docking-based virtual screening by structural filtration. J Mol Model 16(7):1223–1230. doi:10.1007/s00894-009-0633-8 CrossRefGoogle Scholar
  16. 16.
    Lead Finder distributive. http://www.moltech.ru/_downloads/download.php?dl=1. Accessed 8 September, 2011
  17. 17.
    Novikov FN, Stroylov VS, Stroganov OV, Kulkov V, Chilov GG (2009) Developing novel approaches to improve binding energy estimation and virtual screening: a PARP case study. J Mol Model 15(11):1337–1347. doi:10.1007/s00894-009-0497-y CrossRefGoogle Scholar
  18. 18.
    Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32(4):742–755. doi:10.1002/jcc.21643 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Fedor N. Novikov
    • 1
  • Viktor S. Stroylov
    • 1
  • Alexey A. Zeifman
    • 2
  • Oleg V. Stroganov
    • 1
    • 2
  • Val Kulkov
    • 3
  • Ghermes G. Chilov
    • 1
    • 2
  1. 1.MolTech LtdMoscowRussia
  2. 2.N.D.Zelinsky Institute of Organic ChemistryMoscowRussia
  3. 3.BioMolTech CorpTorontoCanada

Personalised recommendations