Journal of Computer-Aided Molecular Design

, Volume 26, Issue 1, pp 57–67 | Cite as

Does your model weigh the same as a Duck?



Computer-aided drug design is a mature field by some measures, and it has produced notable successes that underpin the study of interactions between small molecules and living systems. However, unlike a truly mature field, fallacies of logic lie at the heart of the arguments in support of major lines of research on methodology and validation thereof. Two particularly pernicious ones are cum hoc ergo propter hoc (with this, therefore because of this) and confirmation bias (seeking evidence that is confirmatory of the hypothesis at hand). These fallacies will be discussed in the context of off-target predictive modeling, QSAR, molecular similarity computations, and docking. Examples will be shown that avoid these problems.


Correlation fallacy Confirmation bias QSAR Docking Off-targets Holy Grail 



The authors gratefully acknowledge NIH for partial funding of the work (grant GM070481). Dr. Jain has a financial interest in BioPharmics LLC, a biotechnology company whose main focus is in the development of methods for computational modeling in drug discovery. Tripos Inc. has exclusive commercial distribution rights for Surflex-Dock and Surflex-Sim, licensed from BioPharmics LLC.


  1. 1.
    Nickerson RS (1998) Rev Gen Psychol 2:175CrossRefGoogle Scholar
  2. 2.
    Johnson SR (2008) J Chem Inf Model 48:25CrossRefGoogle Scholar
  3. 3.
    Kannankeril P, Roden DM, Darbar D (2010) Pharmacol Rev 62:760CrossRefGoogle Scholar
  4. 4.
    Cleves AE, Jain AN (2008) J Comput Aided Mol Des 22:147CrossRefGoogle Scholar
  5. 5.
    Yera ER, Cleves AE, Jain AN (2011) J Med Chem 54:6771CrossRefGoogle Scholar
  6. 6.
    Kola I, Landis J (2004) Nat Rev Drug Discov 3:711CrossRefGoogle Scholar
  7. 7.
    Cleves AE, Jain AN (2006) J Med Chem 49:2921CrossRefGoogle Scholar
  8. 8.
    Jain AN (2000) J Comput Aided Mol Des 14:199CrossRefGoogle Scholar
  9. 9.
    Jain AN (2004) J Med Chem 47:947CrossRefGoogle Scholar
  10. 10.
    Romero K, Woosley RL (2009) Pharmacoepidemiol Drug Safety 18:423CrossRefGoogle Scholar
  11. 11.
    Ekins S, Balakin KV, Savchuk N, Ivanenkov Y (2006) J Med Chem 49:5059CrossRefGoogle Scholar
  12. 12.
    Jain AN (2010) J Comput Aided Mol Des 24:865CrossRefGoogle Scholar
  13. 13.
    Langham JJ, Cleves AE, Spitzer R, Kirshner D, Jain AN (2009) J Med Chem 52:6107CrossRefGoogle Scholar
  14. 14.
    Dietterich TG, Lathrop RH, Lozano-Perez T (1997) Artif Intell 89:31CrossRefGoogle Scholar
  15. 15.
    Jain AN, Dietterich TG, Lathrop RH, Chapman D, REJr Critchlow, Bauer BE, Webster TA, Lozano-Perez T (1994) J Comput Aided Mol Des 8:635CrossRefGoogle Scholar
  16. 16.
    Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315CrossRefGoogle Scholar
  17. 17.
    Jain AN, Harris NL, Park JY (1995) J Med Chem 38:1295CrossRefGoogle Scholar
  18. 18.
    Jain AN (1996) J Comput Aided Mol Des 10:427CrossRefGoogle Scholar
  19. 19.
    Pham TA, Jain AN (2006) J Med Chem 49:5856CrossRefGoogle Scholar
  20. 20.
    Pham TA, Jain AN (2008) J Comput Aided Mol Des 22:269CrossRefGoogle Scholar
  21. 21.
    Dustan Sarazan R, Crumb WJ (2004) Eur J Pharmacol 502:163CrossRefGoogle Scholar
  22. 22.
    Tarantino P, Appleton N, Lansdell K (2005) Eur J Pharmacol 510:75CrossRefGoogle Scholar
  23. 23.
    Grant J, Gallardo M, Pickup B (1996) J Comput Chem 17:1653CrossRefGoogle Scholar
  24. 24.
    Masek BB, Merchant A, Matthew JB (1993) Proteins 17:193CrossRefGoogle Scholar
  25. 25.
    Masek BB, Merchant A, Matthew JB (1993) J Med Chem 36:1230CrossRefGoogle Scholar
  26. 26.
    Mount J, Ruppert J, Welch W, Jain AN (1999) J Med Chem 42:60CrossRefGoogle Scholar
  27. 27.
    Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) J Med Chem 53:3862CrossRefGoogle Scholar
  28. 28.
    Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J, Yeh E, Thode S, Jarnagin K, Jain AN, Morgans D, Melese T (2001) Cancer Res 61:4175Google Scholar
  29. 29.
    Hawkins PC, Skillman AG, Nicholls A (2007) J Med Chem 50:74CrossRefGoogle Scholar
  30. 30.
    Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789CrossRefGoogle Scholar
  31. 31.
    Willett J (1987) Similarity and clustering in chemical information systems. Wiley, New JerseyGoogle Scholar
  32. 32.
    Jain AN (2009) J Comput Aided Mol Des 23:355CrossRefGoogle Scholar
  33. 33.
    Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) J Chem Inf Model 47:2293CrossRefGoogle Scholar
  34. 34.
    Jain AN (2007) J Comput Aided Mol Des 21:281CrossRefGoogle Scholar
  35. 35.
    Jain AN (2008) J Comput Aided Mol Des 22:201CrossRefGoogle Scholar
  36. 36.
    Jain AN, Nicholls A (2008) J Comput Aided Mol Des 22:133CrossRefGoogle Scholar
  37. 37.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739–1749Google Scholar
  38. 38.
    Rosenblatt F (1961) Principles of Neurodynamics. Perceptrons and the theory of brain mechanisms, DTIC DocumentGoogle Scholar
  39. 39.
    Minsky M, Papert S (1969) Perceptrons. MIT press, CambridgeGoogle Scholar
  40. 40.
    Rumelhart DE, McClelland JL (1988) Parallel distributed processing. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Bioengineering and Therapeutic Sciences, Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations