Advertisement

Journal of Computer-Aided Molecular Design

, Volume 26, Issue 5, pp 635–645 | Cite as

Prediction of hydration free energies for aliphatic and aromatic chloro derivatives using molecular dynamics simulations with the OPLS-AA force field

  • Oliver Beckstein
  • Bogdan I. IorgaEmail author
Article

Abstract

All-atom molecular dynamics computer simulations were used to blindly predict the hydration free energies of a range of chloro-organic compounds as part of the SAMPL3 challenge. All compounds were parameterized within the framework of the OPLS-AA force field, using an established protocol to compute the absolute hydration free energy via a windowed free energy perturbation approach and thermodynamic integration. Three different approaches to deriving partial charge parameters were pursued: (1) using existing OPLS-AA atom types and charges with minor adjustments of partial charges on equivalent connecting atoms; (2) calculation of quantum mechanical charges via geometry optimization, followed by electrostatic potential (ESP) fitting, using Jaguar at the LMP2/cc-pVTZ(-F) level; and (3) via geometry optimization and CHelpG charges (Gaussian03 at the HF/6-31G* level), followed by two-stage RESP fitting. Protocol 3 generated the most accurate predictions with a root mean square (RMS) error of \(1.2\,\hbox{kcal}\,\hbox{mol}^{-1}\) for the entire data set. It was found that the deficiency of the standard OPLS-AA parameters, protocol 1 (RMS error \(2.4\,\hbox{kcal}\,\hbox{mol}^{-1}\) overall), was mostly due to compounds with more than three chlorine substituents on an aromatic ring. For this latter subset, the RMS errors were \(1.4\,\hbox{kcal}\,\hbox{mol}^{-1}\) (protocol 3) and \(4.3\,\hbox{kcal} \, \hbox{mol}^{-1}\) (protocol 1), respectively. We propose new OPLS-AA atom types for aromatic carbon and chlorine atoms in rings with ≥4 Cl-substituents that perform better than the best QM-based approach, resulting in an RMS error of \(1.2\,\hbox{kcal} \,\hbox{mol}^{-1}\) for these difficult compounds.

Keywords

Molecular dynamics Hydration free energy OPLS-AA force field Ligand parameterization Free energy perturbation Thermodynamic integration 

Notes

Acknowledgments

This work was carried out, in part, under the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission Capacities Area-Research Infrastructures Initiative.

Supplementary material

10822_2011_9527_MOESM1_ESM.pdf (3.6 mb)
PDF (3722 KB)

References

  1. 1.
    Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507. doi: 10.1021/jp806724u CrossRefGoogle Scholar
  2. 2.
    Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279. doi: 10.1007/s10822-010-9350-8 CrossRefGoogle Scholar
  3. 3.
    Klimovich PV, Mobley DL (2010) Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. J Comput Aided Mol Des 24(4):307–316. doi: 10.1007/s10822-010-9343-7 CrossRefGoogle Scholar
  4. 4.
    Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comp Chem 25(13):1584–1604. doi: 10.1002/jcc.20082 CrossRefGoogle Scholar
  5. 5.
    Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102(19):6665–6670. doi: 10.1073/pnas.0408037102 CrossRefGoogle Scholar
  6. 6.
    van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45(25):4064–4092. doi: 10.1002/anie.200502655 CrossRefGoogle Scholar
  7. 7.
    Helms V, Wade R (1997) Free energies of hydration from thermodynamic integration: Comparison of molecular mechanics force fields and evaluation of calculation accuracy. J Comput Chem 18(4):449–462. doi: 10.1002/(SICI)1096-987X(199703)18:4<449::AID-JCC1>3.0.CO;2-T CrossRefGoogle Scholar
  8. 8.
    Geerke DP, van Gunsteren WF (2006) Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents. Chem Phys Chem 7(3):671–678. doi: 10.1002/cphc.200500510 CrossRefGoogle Scholar
  9. 9.
    Shirts MR, Pande VS (2005) Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys 122(13):134508. doi: 10.1063/1.1877132 CrossRefGoogle Scholar
  10. 10.
    Mobley DL, Dumont E, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: Small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254. doi: 10.1021/jp0667442 CrossRefGoogle Scholar
  11. 11.
    Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) Predictions of hydration free energies from all-atom molecular dynamics simulations. J Phys Chem B 113(14):4533–4537. doi: 10.1021/jp806838b CrossRefGoogle Scholar
  12. 12.
    Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) Small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J Chem Theory Comput 5(2):350–358. doi: 10.1021/ct800409d CrossRefGoogle Scholar
  13. 13.
    Sulea T, Corbeil C, Purisima E (2010) Rapid prediction of solvation free energy. 1. An extensive test of linear interaction energy (LIE). J Chem Theory Comput 6(5):1608–1621. doi: 10.1021/ct9006025 CrossRefGoogle Scholar
  14. 14.
    Purisima EO, Corbeil CR, Sulea T (2010) Rapid prediction of solvation free energy. 3. Application to the SAMPL2 challenge. J Comput Aided Mol Des 24(4):373–383. doi: 10.1007/s10822-010-9341-9 CrossRefGoogle Scholar
  15. 15.
    Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519. doi: 10.1021/ct900587b CrossRefGoogle Scholar
  16. 16.
    Baker C, Lopes P, Zhu X, Roux B, MacKerell A Jr (2010) Accurate calculation of hydration free energies using pair-specific Lennard-Jones parameters in the CHARMM Drude polarizable force field. J Chem Theory Comput 6(4):1181–1198. doi: 10.1021/ct9005773 CrossRefGoogle Scholar
  17. 17.
    Henschler D (1994) Toxicity of chlorinated organic compounds: effects of the introduction of chlorine in organic molecules. Angew Chem Int Ed Engl 33(19):1920–1935. doi: 10.1002/anie.199419201 CrossRefGoogle Scholar
  18. 18.
    Paulsen M, Straatsma T (1996) Chlorinated ethanes in aqueous solution: parameterization based on thermodynamics of hydration. Chem Phys Lett 259(1–2):142–145. doi: 10.1016/0009-2614(96)00729-4 CrossRefGoogle Scholar
  19. 19.
    Ratkova E, Fedorov M (2011) Combination of RISM and cheminformatics for efficient predictions of hydration free energy of polyfragment molecules: application to a set of organic pollutants. J Chem Theory Comput 7(5):1450–1457. doi: 10.1021/ct100654h CrossRefGoogle Scholar
  20. 20.
    Kaminski G, Duffy E, Matsui T, Jorgensen W (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98(49):13077–13082. doi: 10.1021/j100100a043 CrossRefGoogle Scholar
  21. 21.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi: 10.1021/ja9621760 CrossRefGoogle Scholar
  22. 22.
    Damm W, Frontera A, Tirado-Rives J, Jorgensen W (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18(16):1955–1970. doi: 10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L CrossRefGoogle Scholar
  23. 23.
    Jorgensen WL, McDonald NA (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct Theochem 424(1-2):145–155. doi: 10.1016/S0166-1280(97)00237-6 CrossRefGoogle Scholar
  24. 24.
    McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102(41):8049–8059. doi: 10.1021/jp981200o Google Scholar
  25. 25.
    Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: Resolution of the amine hydration problem. J Am Chem Soc 121(20):4827–4836. doi: 10.1021/ja984106u CrossRefGoogle Scholar
  26. 26.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487. doi: 10.1021/jp003919d CrossRefGoogle Scholar
  27. 27.
    Watkins EK, Jorgensen WL (2001) Perfluoroalkanes: Conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J Phys Chem A 105(16):4118–4125. doi: 10.1021/jp004071w CrossRefGoogle Scholar
  28. 28.
    Price M, Ostrovsky D, Jorgensen W (2001) Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem 22(13):1340–1352. doi: 10.1002/jcc.1092 CrossRefGoogle Scholar
  29. 29.
    Kony D, Damm W, Stoll S, Van Gunsteren W (2002) An improved OPLS-AA force field for carbohydrates. J Comput Chem 23(15):1416–1429. doi: 10.1002/jcc.10139 CrossRefGoogle Scholar
  30. 30.
    Kahn K, Bruice T (2002) Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem 23(10):977–996. doi: 10.1002/jcc.10051 CrossRefGoogle Scholar
  31. 31.
    Thomas L, Christakis T, Jorgensen W (2006) Conformation of alkanes in the gas phase and pure liquids. J Phys Chem B 110(42):21198–21204. doi: 10.1021/jp064811m CrossRefGoogle Scholar
  32. 32.
    Jorgensen W, Jensen K, Alexandrova A (2007) Polarization effects for hydrogen-bonded complexes of substituted phenols with water and chloride ion. J Chem Theory Comput 3(6):1987–1992. doi: 10.1021/ct7001754 CrossRefGoogle Scholar
  33. 33.
    Xu Z, Luo HH, Tieleman DP (2007) Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues. J Comput Chem 28(3):689–697. doi: 10.1002/jcc.20560 CrossRefGoogle Scholar
  34. 34.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi: 10.1021/ct700301q CrossRefGoogle Scholar
  35. 35.
    Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327. doi: 10.1002/jcc.21787 CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  37. 37.
    Jorgensen W, Ulmschneider J, Tirado-Rives J (2004) Free energies of hydration from a generalized born model and an all-atom force field. J Phys Chem B 108(41):16264–16270. doi: 10.1021/jp0484579 CrossRefGoogle Scholar
  38. 38.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi: 10.1063/1.445869 CrossRefGoogle Scholar
  39. 39.
    Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592. doi: 10.1063/1.470117 CrossRefGoogle Scholar
  40. 40.
    Hess B (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122. doi: 10.1021/ct700200b CrossRefGoogle Scholar
  41. 41.
    Jorge M, Garrido N, Queimada A, Economou I, Macedo E (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027. doi: 10.1021/ct900661c CrossRefGoogle Scholar
  42. 42.
    Frenkel D, Smit B (2002) Understanding molecular simulations, 2nd edn. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Structural Bioinformatics and Computational Biochemistry Unit, Department of BiochemistryUniversity of OxfordOxfordUK
  2. 2.Department of PhysicsArizona State UniversityTempeUSA
  3. 3.Institut de Chimie des Substances Naturelles, CNRS UPR 2301Centre de Recherche de Gif-sur-YvetteGif-sur-YvetteFrance

Personalised recommendations