Conformational analysis of the ΜΒΡ83–99 (Phe91) and ΜΒΡ83–99 (Tyr91) peptide analogues and study of their interactions with the HLA-DR2 and human TCR receptors by using Molecular Dynamics

  • C. Potamitis
  • M.-T. Matsoukas
  • T. Tselios
  • T. Mavromoustakos
  • S. Golič Grdadolnik


The two new synthetic analogues of the MBP83–99 epitope substituted at Lys91 (primary TCR contact) with Phe [MBP83–99 (Phe91)] or Tyr [MBP83–99 (Tyr91)], have been structurally elucidated using 1D and 2D high resolution NMR studies. The conformational analysis of the two altered peptide ligands (APLs) has been performed and showed that they adopt a linear and extended conformation which is in agreement with the structural requirements of the peptides that interact with the HLA-DR2 and TCR receptors. In addition, Molecular Dynamics (MD) simulations of the two analogues in complex with HLA-DR2 (DRA, DRB1*1501) and TCR were performed. Similarities and differences of the binding motif of the two analogues were observed which provide a possible explanation of their biological activity. Their differences in the binding mode in comparison with the MBP83–99 epitope may also explain their antagonistic versus agonistic activity. The obtained results clearly indicate that substitutions in crucial amino acids (TCR contacts) in combination with the specific conformational characteristics of the MBP83–99 immunodominant epitope lead to an alteration of their biological activity. These results make the rational drug design intriguing since the biological activity is very sensitive to the substitution and conformation of the mutated MBP epitopes.


Molecular Dynamics (MD) Myelin basic protein (MBP) Conformational analysis Binding motif NMR Multiple sclerosis (MS) 



This work was partially supported by EN-FIST Centre of Excellence (Dunajska 156, SI-1000 Ljubljana, Slovenia) and Ministry of Higher Education, Science and Technology of Slovenia. We acknowledge A. Suarez amd M. Mavromoustakos for their linguistic amendment of the manuscript. We gratefully thank Prof. Leonardo Pardo (Universitat Autόnoma de Barcelona) for computer facilities and software use.

Supplementary material

10822_2011_9467_MOESM1_ESM.doc (6.7 mb)
Tables of 1H and 13C chemical shifts, NMR spectra of two new synthetic analogues of the MBP83–99 epitope substituted at Lys91 amino acid with Phe (MBP83–99 (Phe91)) or Tyr (MBP83–99 (Tyr91)) (DOC 6909 kb)


  1. 1.
    Kenealy SJ, Perical-Vance MA, Haines JL (2003) The genetic epidemiology of MS. J Neuroimmunol 143:7–12CrossRefGoogle Scholar
  2. 2.
    Prat E, Martin R (2002) The immunopathogenesis of MS. J Rehabil Res Dev 39:187–200Google Scholar
  3. 3.
    Aguado B, Bahram S, Beck S, Campbell RD, Forbes SA, Geraghty D, Guillaudeux T, Hood L, Horton R, Inoko H, Janer M, Jasoni C, Madan A, Milne S, Neville M, Oka A, Qin S, Ribas-Despuig G, Rogers J, Rowen L, Shiina T, Spies T, Tamiya G, Tashiro H, Trowsdale J, Vu Q, Williams L, Yamazaki M, Sequence Consortium MHC (1999) Complete sequence and gene map of a human MHC complex. Nature 401:921–923CrossRefGoogle Scholar
  4. 4.
    Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221CrossRefGoogle Scholar
  5. 5.
    Barcellos LF, Thomson G (2003) Genetic analysis of MS. J Neuroimmunol 143:1–6CrossRefGoogle Scholar
  6. 6.
    Muraro PA, Vergelli M, Kalbus M, Banks DE, Nagle J, Tranquill LR, Nepom GT, Biddison WE, McFarland HF, Martin R (1997) Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope in HLADR4. J Clin Invest 100:339–349CrossRefGoogle Scholar
  7. 7.
    Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187CrossRefGoogle Scholar
  8. 8.
    Martin R, Howell MD, Jaraquemada D, Flerlage M, Richert J, Brostoff S, Long EO, McFarlin DE, McFarland HF (1991) A myelin basic protein peptide is recognized by cytotoxic T cells in a context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173:19–24CrossRefGoogle Scholar
  9. 9.
    Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179:973–984CrossRefGoogle Scholar
  10. 10.
    Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621CrossRefGoogle Scholar
  11. 11.
    Valli A, Sette A, Kappos L, Oseroff C, Sidney J, Miescher G, Hochberger M, Albert ED, Adorini L (1993) Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest 91:616–628CrossRefGoogle Scholar
  12. 12.
    Kalbus M, Fleckenstein BT, Offenhausser M, Bluggel M, Melms A, Meyer HF, Rammensee HG, Martin R, Jung G, Sommer N (2001) Ligand motif of the autoimmune disease-associated mouse MHC class II molecule H2-A(s). Eur J Immunol 31:551–562CrossRefGoogle Scholar
  13. 13.
    Spyranti Z, Tselios T, Deraos G, Matsoukas J, Spyroulias GA (2010) NMR structural elucidation of myelin basic protein epitope 83–99 implicated in multiple sclerosis. Amino Acids 38:929–936CrossRefGoogle Scholar
  14. 14.
    Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175CrossRefGoogle Scholar
  15. 15.
    Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L (2000) The altered peptide ligand in relapsing MS study NMR of MBP 83–99 epitope group. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat Med 6:1176–1182CrossRefGoogle Scholar
  16. 16.
    Katsara M, Yuriev E, Ramsland PA, Deraos G, Tselios T, Matsoukas J, Apostolopoulos V (2008) A double mutation of MBP(83–99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 200:77–89CrossRefGoogle Scholar
  17. 17.
    Katsara M, Yuriev E, Ramsland PA, Deraos G, Tselios T, Matsoukas J, Apostolopoulos V (2008) Mannosylation of mutated MBP83–99 peptides diverts immune response from Th1 to Th2. Molec Immunol 45:3661–3670CrossRefGoogle Scholar
  18. 18.
    Katsara M, Deraos G, Tselios T, Matsoukas J, Apostolopoulos V (2008) Design of novel cyclic altered peptide ligands of myelin basic protein MBP83–99 that modulate immune responses in SJL/J mice. J Med Chem 51:3971–3978CrossRefGoogle Scholar
  19. 19.
    Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745CrossRefGoogle Scholar
  20. 20.
    Li X, Peterkofsky A, Wang G (2008) Solution structure of NPr, bacterial signal-transducing protein that controls the phosphorylation state of the potassium transporter-regulating protein IIANtr. Amino acids 35:531–539CrossRefGoogle Scholar
  21. 21.
    Mantzourani ED, Mavromoustakos TM, Platts JA, Matsoukas JM, Tselios T (2005) Structural requirements for binding of myelin basic protein (MBP) peptides to MHC II: effects on immune regulation. Curr Med Chem 12:1521–1535CrossRefGoogle Scholar
  22. 22.
    Mantzourani ED, Tselios TV, Grdadolnik SG, Platts JA, Brancale A, Deraos G, Matsoukas JM, Mavromoustakos TM (2006) Comparison of proposed putative active conformations of linear altered peptide ligands of myelin basic protein epitope 87–99 by spectroscopic and modelling studies: the role of position 91 and 96 in T-cell receptor activation. J Med Chem 49:6683–6691CrossRefGoogle Scholar
  23. 23.
    Mantzourani ED, Tselios TV, Grdadolnik SG, Brancale A, Platts JA, Matsoukas JM, Mavromoustakos TM (2006) A putative bioactive conformation for the altered peptide ligand of myelin basic protein and inhibitor of experimental autoimmune encephalomyelitis [Arg91, Ala96] MBP87–99. J Mol Graph Mod 25:17–29CrossRefGoogle Scholar
  24. 24.
    Mantzourani ED, Platts JA, Brancale A, Mavromoustakos TM, Tselios TV (2007) Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87–99 implicated in multiple sclerosis and its antagonists altered peptide ligands: triggering of immune response. J Mol Graphics Model 26:471–481CrossRefGoogle Scholar
  25. 25.
    Mantzourani E, Laimou D, Matsoukas MT, Tselios T (2008) Peptides as therapeutic agents or drug leads for autoimmune, hormone dependent and cardiovascular diseases. Anti-inflamm Anti-allergy Agents Med Chem 7:294–306Google Scholar
  26. 26.
    Mantzourani ED, Blokar K, Tselios TV, Matsoukas JM, Platts JA, Mavromoustakos TM, Grdadolnik SG (2008) A combined NMR and molecular dynamics simulation study to determine the conformational properties of agonists and antagonists against experimental autoimmune encephalomyelitis. Bioorg Med Chem 16:2171–2182CrossRefGoogle Scholar
  27. 27.
    Spyranti Z, Dalkas GA, Spyroulias GA, Mantzourani ED, Mavromoustakos T, Friligou I, Matsoukas JM, Tselios TV (2007) Putative bioactive conformations of amide linked cyclic myelin basic protein peptide analogues associated with experimental autoimmune encephalomyelitis. J Med Chem 50:6039–6047CrossRefGoogle Scholar
  28. 28.
    Tselios T, Probert L, Daliani I, Matsoukas E, Troganis A, Gerothanassis I, Mavromoustakos T, Moore G, Matsoukas J (1999) Design and synthesis of a potent cyclic analogue of the myelin basic protein epitope MBP72–85: importance of the Ala81 carboxyl group and of a cyclic conformation for induction of experimental allergic encephalomyelitis. J Med Chem 42:1170–1177CrossRefGoogle Scholar
  29. 29.
    Tselios T, Daliani I, Deraos S, Thymianou S, Matsoukas E, Troganis A, Gerothanassis I, Mouzaki A, Mavromoustakos T, Probert L, Matsoukas J (2000) Treatment of experimental allergic encephalomyelitis (EAE) by a rationally designed cyclic analogue of myelin basic protein (MBP) epitope 72–85. Bioorg Med Chem Lett 10:2713–2717CrossRefGoogle Scholar
  30. 30.
    Tselios T, Apostolopoulos V, Daliani I, Deraos S, Grdadolnik S, Mavromoustakos T, Melachrinou M, Thymianou S, Probert L, Mouzaki A, Matsoukas J (2002) Antagonistic effects of human cyclic MBP(87–99) altered peptide ligands in experimental allergic encephalomyelitis and human T-cell proliferation. J Med Chem 45:275–283CrossRefGoogle Scholar
  31. 31.
    Tselios T, Daliani I, Deraos S, Thymianou S, Matsoukas E, Troganis A, Gerothanassis I, Mouzaki A, Mavromoustakos T, Probert L, Matsoukas J (2000) Treatment of experimental allergic encephalomyelitis (EAE) by a rationally designed cyclic analogue of myelin basic protein (MBP) epitope 72–85. Bioorg Med Chem Let 10:2713–2717CrossRefGoogle Scholar
  32. 32.
    Soteriadou KP, Tzinia AK, Panou-Pamonis E, Tsikaris V, Sakarellos-Daitsiotis M, Sakarellos C, Papapoulou Y, Matsas R (1996) Antigenicity and conformational analysis of the Zn(2+)-binding sites of two Zn(2+)-metalloproteases: Leishmania gp63 and mammalian endopeptidase-24.11. Biochem J 313:455–466Google Scholar
  33. 33.
    LaPlanche LA, Rogers MT (1964) Cis and trans configurations of the peptide bond in N-monosubstituted amides by nuclear magnetic resonance. J Am Chem Soc 86:337–341CrossRefGoogle Scholar
  34. 34.
    Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW (2005) Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 6:490–496CrossRefGoogle Scholar
  35. 35.
    Fares C, Libich DS, Harauz G (2006) Solution NMR structure of an immunodominant epitope of myelin basic protein. FEBS J 273:601–614CrossRefGoogle Scholar
  36. 36.
    Martel P, Makriyannis A, Mavromoustakos T, Kelly K, Jeffrey KR (1993) Topography of tetrahydrocannabinol in model membranes using neutron diffraction. Biochim Biophys Acta 1151:51–58CrossRefGoogle Scholar
  37. 37.
    Mavromoustakos T, Daliani I (1999) Effects of cannabinoids in membrane bilayers containing cholesterol. Biochim Biophys Acta 1420:252–265CrossRefGoogle Scholar
  38. 38.
    Mavromoustakos T, Theodoropoulou E (1998) A combined use of 13C-cross polarization/magic angle spinning, 13C-magic angle spinning and 31P nuclear magnetic spectroscopy with differential scanning calorimetry to study cannabinoid-membrane interactions. Chem Phys Lipids 92:37–52CrossRefGoogle Scholar
  39. 39.
    Mavromoustakos T, Yang DP, Broderick W, Fournier D, Herbette LG, Makriyannis A (1991) Small angle X-Ray diffraction studies on the topography of cannabinoids in synaptic plasma membranes. Pharmacol Biochem Behav 40:547–552CrossRefGoogle Scholar
  40. 40.
    Mavromoustakos T, Yang D, Makriyannis A (1994) Topography of Alphaxalone and Δ16-alphaxalone in membrane bilayers containing cholesterol. Biochim Biophys Acta 1194:69–74CrossRefGoogle Scholar
  41. 41.
    Mavromoustakos T, Yang DP, Makriyannis A (1995) Small angle x-ray diffraction and differential scanning calorimetric studies on O-methyl-(−)-Δ8-Tetrahydrocannabinol and its iodinated derivative in membrane bilayers Biochim. Biophys Acta 1237:183–188CrossRefGoogle Scholar
  42. 42.
    Mavromoustakos T, Yang DP, Makriyannis A (1995) Effects of the anesthetic steroids alphaxalone and its inactive analog Δ16-analog on the thermotropic properties of membrane bilayers. Amodel for membrane perturbation. Biochim Biophys Acta 1239:257–264CrossRefGoogle Scholar
  43. 43.
    Mavromoustakos T, De-Ping Y, Makriyannis A (1996) Topography and thermotropic properties of cannabinoids in brainsphingomyelin bilayers. Life Sci 59:1969–1979CrossRefGoogle Scholar
  44. 44.
    Mavromoustakos T, Theodoropoulou E, Papahatjis D, Kourouli T, De-Ping Y, Trumbore M, Makriyannis A (1996) Studies on the thermotropic effects of cannabinoids on phosphatidylcholine bilayers using differential scanning calorimetry and small angle X-ray diffraction. Biochim Biophys Acta 1281:235–244CrossRefGoogle Scholar
  45. 45.
    Mavromoustakos T, Theodoropoulou E, Yang DP (1997) The use of high-resolution solid-state NMR spectroscopy and differential scanning calorimetry to study interactions of anaesthetic steroids with membrane. Biochim Biophys Acta 1328:65–73CrossRefGoogle Scholar
  46. 46.
    Mavromoustakos T, Papahatjis D, Laggner P (2001) Differential membrane fluidization by active and inactive cannabinoid analogs. Biochim Biophys Acta 1512:183–190CrossRefGoogle Scholar
  47. 47.
    Koukoulitsa C, Durdagi S, Siapi E, Villalonga-Barber C, Alexi X, Sttele BR, Screttas MM, Alexis MN, Kakoulidou AT, Mavromoustakos T (2011) Comparison of thermal effects of stilbenoid analogs in lipid bilayers using differential scanning calorimetry and molecular dynamics:correlation of thermal effects and topographical position with antioxidant activity. Eur Biophys J 40:865–875CrossRefGoogle Scholar
  48. 48.
    Braunschweiler L, Ernst RR (1983) Coherence transfere by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528Google Scholar
  49. 49.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange proccesses by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  50. 50.
    Discovery Studio v1.7, a molecular modeling system, supplied by Accelrys Inc., San Diego, CAGoogle Scholar
  51. 51.
    Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: A Generic Force Field for Molecular Simulations. J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  52. 52.
    van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1717CrossRefGoogle Scholar
  53. 53.
    van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular Simulation: the GROMOS96 Manual and User Guide; Vdf Hochschulverlag AG an der ETH ZurichGoogle Scholar
  54. 54.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  55. 55.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  56. 56.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  57. 57.
    Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771–784CrossRefGoogle Scholar
  58. 58.
    MacroModel, version 9.8; Schrödinger, LLC: New York, NY, 2010Google Scholar
  59. 59.
    LigandScout 3.0, Inte:Ligand, Software-Entwicklungs und Consulting GmbH: Vienna, Austria, 2010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Hellenic Research FoundationInstitute of Organic and Pharmaceutical ChemistryAthensGreece
  2. 2.Chemistry DepartmentUniversity of AthensAthensGreece
  3. 3.Department of ChemistryUniversity of PatrasPatrasGreece
  4. 4.Laboratory of Biomolecular StructureNational Institute of ChemistryLjubljanaSlovenia
  5. 5.EN-FIST Centre of ExcellenceLjubljanaSlovenia

Personalised recommendations