Design of a Fragment Library that maximally represents available chemical space

  • M. N. Schulz
  • J. Landström
  • K. Bright
  • R. E. Hubbard
Article

Abstract

Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).

Keywords

Fragment-based ligand discovery Library design SAR by catalog Nearest neighbours 

Supplementary material

10822_2011_9461_MOESM1_ESM.doc (318 kb)
Supplementary material 1 (DOC 318 kb)

References

  1. 1.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534CrossRefGoogle Scholar
  2. 2.
    Hajduk PJ (2006) SAR by NMR: putting the pieces together. Mol Interv 6(5):266–272. doi:10.1124/mi.6.5.8 CrossRefGoogle Scholar
  3. 3.
    Fischer M, Hubbard RE (2009) Fragment-based ligand discovery. Mol Interv 9(1):22–30. doi:10.1124/mi.9.1.7 CrossRefGoogle Scholar
  4. 4.
    Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharmacol 9(5):615–621. doi:10.1016/j.coph.2009.04.009 CrossRefGoogle Scholar
  5. 5.
    Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680. doi:10.1021/jm8000373 CrossRefGoogle Scholar
  6. 6.
    Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7 CrossRefGoogle Scholar
  7. 7.
    Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239. doi:10.1016/B978-0-12-381274-2.00009-1 CrossRefGoogle Scholar
  8. 8.
    Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20(4):497–507. doi:10.1016/j.sbi.2010.04.003 CrossRefGoogle Scholar
  9. 9.
    Giannetti AM (2011) From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol 493:169–218. doi:10.1016/B978-0-12-381274-2.00008-X CrossRefGoogle Scholar
  10. 10.
    Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol 493:277–298. doi:10.1016/B978-0-12-381274-2.00011-X CrossRefGoogle Scholar
  11. 11.
    Hubbard RE, Murray JB (2011) Experiences in fragment-based lead discovery. Methods Enzymol 493:509–531. doi:10.1016/B978-0-12-381274-2.00020-0 CrossRefGoogle Scholar
  12. 12.
    Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17(6):643–652. doi:10.1016/j.copbio.2006.10.007 CrossRefGoogle Scholar
  13. 13.
    Barker JJ, Barker O, Courtney SM, Gardiner M, Hesterkamp T, Ichihara O, Mather O, Montalbetti CA, Muller A, Varasi M, Whittaker M, Yarnold CJ (2010) Discovery of a novel Hsp90 inhibitor by fragment linking. ChemMedChem 5(10):1697–1700. doi:10.1002/cmdc.201000219 CrossRefGoogle Scholar
  14. 14.
    Brough PA, Barril X, Borgognoni J, Chene P, Davies NG, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52(15):4794–4809. doi:10.1021/jm900357y CrossRefGoogle Scholar
  15. 15.
    Hubbard RE (2008) Fragment approaches in structure-based drug discovery. J Synchrotron Radiat 15(Pt 3):227–230. doi:10.1107/S090904950705666X CrossRefGoogle Scholar
  16. 16.
    Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JV, Lightle S, Huband MD, Stover CK (2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem Biol 4(6):473–483. doi:10.1021/cb9000102 CrossRefGoogle Scholar
  17. 17.
    Davies TG, Woodhead SJ, Collins I (2009) Fragment-based discovery of inhibitors of protein kinase B. Curr Top Med Chem 9(18):1705–1717CrossRefGoogle Scholar
  18. 18.
    Orita M, Ohno K, Warizaya M, Amano Y, Niimi T (2011) Lead generation and examples opinion regarding how to follow up hits. Methods Enzymol 493:383–419. doi:10.1016/B978-0-12-381274-2.00015-7 CrossRefGoogle Scholar
  19. 19.
    Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung KM, Collins I, Davies NG, Drysdale MJ, Dymock B, Eccles SA, Finch H, Fink A, Hayes A, Howes R, Hubbard RE, James K, Jordan AM, Lockie A, Martins V, Massey A, Matthews TP, McDonald E, Northfield CJ, Pearl LH, Prodromou C, Ray S, Raynaud FI, Roughley SD, Sharp SY, Surgenor A, Walmsley DL, Webb P, Wood M, Workman P, Wright L (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51(2):196–218. doi:10.1021/jm701018h CrossRefGoogle Scholar
  20. 20.
    Crisman TJ, Bender A, Milik M, Jenkins JL, Scheiber J, Sukuru SC, Fejzo J, Hommel U, Davies JW, Glick M (2008) “Virtual fragment linking”: an approach to identify potent binders from low affinity fragment hits. J Med Chem 51(8):2481–2491. doi:10.1021/jm701314u CrossRefGoogle Scholar
  21. 21.
    Lau W, Withka J, Hepworth D, Magee T, Du Y, Bakken G, Miller M, Hendsch Z, Thanabal V, Kolodziej S, Xing L, Hu Q, Narasimhan L, Love R, Charlton M, Hughes S, van Hoorn W, Mills J (2011) Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput Aided Mol Des 1–16. doi:10.1007/s10822-011-9434-0
  22. 22.
    Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44(6):2157–2166. doi:10.1021/ci049806z Google Scholar
  23. 23.
    Hubbard RE, Chen I, Davis B (2007) Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Devel 10(3):289–297Google Scholar
  24. 24.
    Chen IJ, Hubbard RE (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des. doi:10.1007/s10822-009-9280-5
  25. 25.
    Blomberg N, Cosgrove D, Kenny P, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aided Mol Des 23(8):513–525. doi:10.1007/s10822-009-9264-5 CrossRefGoogle Scholar
  26. 26.
    Gianti E, Sartori L (2008) Identification and selection of “privileged fragments” suitable for primary screening. J Chem Inf Model 48(11):2129–2139. doi:10.1021/ci800219h CrossRefGoogle Scholar
  27. 27.
    Venhorst J, Núñez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1(9):499–503. doi:10.1021/ml100163s CrossRefGoogle Scholar
  28. 28.
    Tounge BA, Parker MH (2011) Designing a diverse high-quality library for crystallography-based FBDD screening. Methods Enzymol 493:3–20. doi:10.1016/B978-0-12-381274-2.00001-7 CrossRefGoogle Scholar
  29. 29.
    Prakesch M, Denisov AY, Naim M, Gehring K, Arya P (2008) The discovery of small molecule chemical probes of Bcl-X(L) and Mcl-1. Bioorg Med Chem 16(15):7443–7449. doi:10.1016/j.bmc.2008.06.023 CrossRefGoogle Scholar
  30. 30.
    Dalvit C, Mongelli N, Papeo G, Giordano P, Veronesi M, Moskau D, Kummerle R (2005) Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J Am Chem Soc 127(38):13380–13385. doi:10.1021/ja0542385 CrossRefGoogle Scholar
  31. 31.
    Blaney J, Nienaber V, Burley SK (2006) Fragment-based lead discovery and optimization using X-ray crystallography, computational chemistry and high-throughput organic synthesis. In: Jahnke W, Erlanson DA (eds) Fragment-based approaches in drug discovery, Wiley, Weinheim, GermanyGoogle Scholar
  32. 32.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+ CrossRefGoogle Scholar
  33. 33.
    Tversky A (1977) Features of similarity. Psychol Rev 84(4):327–352. doi:10.1037/0033-295x.84.4.327 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. N. Schulz
    • 1
  • J. Landström
    • 1
  • K. Bright
    • 1
  • R. E. Hubbard
    • 1
    • 2
    • 3
  1. 1.YSBL, Chemistry DepartmentUniversity of YorkHeslington, YorkUK
  2. 2.HYMS, University of YorkHeslington, YorkUK
  3. 3.Vernalis (R&D) LtdCambridgeUK

Personalised recommendations