Free energy calculations offer insights into the influence of receptor flexibility on ligand–receptor binding affinities

  • Jožica Dolenc
  • Sereina Riniker
  • Roberto Gaspari
  • Xavier Daura
  • Wilfred F. van Gunsteren
Article

Abstract

Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host–guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand–receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand–DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand–DNA interactions but also from changes in ligand–solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

Keywords

α-Cyclodextrin Conformational flexibility Drug design DNA–ligand binding Molecular dynamics 

Supplementary material

10822_2011_9453_MOESM1_ESM.doc (151 kb)
Supplementary material 1 (DOC 151 kb)

References

  1. 1.
    IUPAP (1978) Symbols, units and nomenclature in physics. Physica 93A:1–63Google Scholar
  2. 2.
    IUPAC (1988) Quantities, units and symbols in physical chemistry. Blackwell, OxfordGoogle Scholar
  3. 3.
    Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51:6237–6255CrossRefGoogle Scholar
  4. 4.
    Mangoni R, Roccatano D, Di Nola A (1999) Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins 35:153–162CrossRefGoogle Scholar
  5. 5.
    Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633CrossRefGoogle Scholar
  6. 6.
    Grunberg R, Nilges M, Leckner J (2006) Flexibility and conformational entropy in protein–protein binding. Structure 14:683–693CrossRefGoogle Scholar
  7. 7.
    Michel J, Verdonk ML, Essex JW (2006) Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? J Med Chem 49:7427–7439CrossRefGoogle Scholar
  8. 8.
    Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134CrossRefGoogle Scholar
  9. 9.
    van Gunsteren WF, Geerke DP, Oostenbrink C, Trzesniak D, van der Vegt NFA (2007) Analysis of the driving forces for biomolecular solvation and association. In: Broglia RA, Tiana G (eds) Protein folding and drug design. Proceedings of the international school of physics ‘Enrico Fermi’. IOS Press, Amsterdam and SIF, Bologna, pp 177–191Google Scholar
  10. 10.
    Dolenc J, Gerster S, van Gunsteren WF (2010) Molecular dynamics simulations shed light on the enthalpic and entropic driving forces that govern the sequence specific recognition between netropsin and DNA. J Phys Chem B 36:708–728Google Scholar
  11. 11.
    Morra G, Genoni A, Neves MAC, Merz KM, Colombo G (2010) Molecular recognition and drug-lead identification: what can molecular simulations tell us? Curr Med Chem 17:25–41CrossRefGoogle Scholar
  12. 12.
    Velazquez-Campoy A, Luque I, Freire E (2001) The application of thermodynamic methods in drug design. Thermochim Acta 380:217–227CrossRefGoogle Scholar
  13. 13.
    Cummings MD, Des Jarlais RL, Gibbs AC, Mohan V, Jaeger E (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48:962–976CrossRefGoogle Scholar
  14. 14.
    May A, Zacharias M (2005) Accounting for global protein deformability during protein–protein and protein-ligand docking. Biochim Biophys Acta 1754:225–231Google Scholar
  15. 15.
    van Dijk M, van Dijk ADJ, Hsu V, Boelens R, Bonvin AMJJ (2006) Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Res 34:3317–3325CrossRefGoogle Scholar
  16. 16.
    Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373:503–519CrossRefGoogle Scholar
  17. 17.
    Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Principles of flexible protein–protein docking. Proteins 73:271–289CrossRefGoogle Scholar
  18. 18.
    Zacharias M (2010) Accounting for conformational changes during protein–protein docking. Curr Opin Struct Biol 20:180–186CrossRefGoogle Scholar
  19. 19.
    Karaca E, Bonvin AMJJ (2011) A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19:555–565CrossRefGoogle Scholar
  20. 20.
    Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541CrossRefGoogle Scholar
  21. 21.
    Gunasekaran K, Nussinov R (2007) How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. J Mol Biol 365:257–273CrossRefGoogle Scholar
  22. 22.
    Baron R, McCammon JA (2008) (Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding. Chem Phys Chem 9:983–988Google Scholar
  23. 23.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313CrossRefGoogle Scholar
  24. 24.
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, ZürichGoogle Scholar
  25. 25.
    Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WF (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26:1719–1751CrossRefGoogle Scholar
  26. 26.
    Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676CrossRefGoogle Scholar
  27. 27.
    Soares TA, Hünenberger PH, Kastenholz MA, Kräutler V, Lenz T, Lins RD, Oostenbrink C, van Gunsteren WF (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725–737CrossRefGoogle Scholar
  28. 28.
    Riniker S, Daura X, van Gunsteren WF (2010) α-cyclodextrin host-guest binding: a computational study of the different driving forces. Helv Chim Acta 93:2318–2325CrossRefGoogle Scholar
  29. 29.
    Liu L, Guo QX (1999) Novel prediction for the driving force and guest orientation in the complexation of α- and β-cyclodextrin with benzene derivatives. J Phys Chem B 103:3461–3467CrossRefGoogle Scholar
  30. 30.
    Liu L, Li WG, Guo QX (1999) Association constant prediction for the inclusion of α-cyclodextrin with benzene derivatives by an artificial neural network. J Incl Phenom Macrocycl Chem 34:291–298CrossRefGoogle Scholar
  31. 31.
    Dolenc J, Oostenbrink C, Koller J, van Gunsteren WF (2005) Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site. Nucleic Acids Res 33:725–733CrossRefGoogle Scholar
  32. 32.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426CrossRefGoogle Scholar
  33. 33.
    Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215:617–621CrossRefGoogle Scholar
  34. 34.
    Daura X, van Gunsteren WF, Mark AE (1999) Folding-unfolding thermodynamics of a beta-heptapeptide from equilibrium simulations. Proteins Struct Funct Genet 34:269–280CrossRefGoogle Scholar
  35. 35.
    Keller B, Daura X, van Gunsteren WF (2010) Comparing geometric and kinetic cluster algorithms for molecular simulation data. J Chem Phys 132:074110CrossRefGoogle Scholar
  36. 36.
    Peter C, Oostenbrink C, van Dorp A, van Gunsteren WF (2004) Estimating entropies from molecular dynamics simulations. J Chem Phys 120:2652–2661CrossRefGoogle Scholar
  37. 37.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jožica Dolenc
    • 1
    • 2
  • Sereina Riniker
    • 1
  • Roberto Gaspari
    • 1
    • 4
  • Xavier Daura
    • 3
  • Wilfred F. van Gunsteren
    • 1
  1. 1.Laboratory of Physical ChemistrySwiss Federal Institute of Technology, ETHZurichSwitzerland
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Catalan Institution for Research and Advanced Studies (ICREA) and Institute of Biotechnology and Biomedicine (IBB)Universitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Empa, Swiss Federal Laboratories for Materials Science and Technologynanotech@surfaces LaboratoryDübendorfSwitzerland

Personalised recommendations