Journal of Computer-Aided Molecular Design

, Volume 25, Issue 8, pp 717–728 | Cite as

Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity

  • Laura Guasch
  • Esther Sala
  • Cristina Valls
  • Mayte Blay
  • Miquel Mulero
  • Lluís Arola
  • Gerard Pujadas
  • Santiago Garcia-VallvéEmail author


Peroxisome Proliferator-Activated Receptor γ (PPARγ) full agonists are molecules with powerful insulin-sensitizing action that are used as antidiabetic drugs. Unfortunately, these compounds also present various side effects. Recent results suggest that effective PPARγ agonists should show a low transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. We use several structure activity relationship studies of synthetic PPARγ agonists to explore the different binding features of full and partial PPARγ agonists with the aim of differentiating the features needed for binding and those needed for the transactivation activity of PPARγ. Our results suggest that effective partial agonists should have a hydrophobic moiety and an acceptor site with an appropriate conformation to interact with arm II and establish a hydrogen bond with Ser342 or an equivalent residue at arm III. Despite the fact that interactions with arm I increase the binding affinity, this region should be avoided in order to not increase the transactivation activity of potential PPARγ partial agonists.


PPARgamma Antidiabetics PPARgamma partial agonists Drug design 3D-QSAR 



Ligand binding domain


Peroxisome proliferator-activated receptor


Quantitative structure–activity relationship


Structure activity relationship





This manuscript was edited for English language fluency by American Journal Experts. This study was supported by Grant Number AGL2008-00387/ALI from the Ministerio de Educación y Ciencia of the Spanish Government and the ACC1Ó (TECCT10-1-0008) program (Generalitat de Catalunya). The authors wish to thank the Servei de Disseny de Fàrmacs (Drug Design Service) of the Catalonia Supercomputer Center (CESCA) for providing access to Schrödinger software.

Supplementary material

10822_2011_9446_MOESM1_ESM.doc (86 kb)
Supplementary material 1 (DOC 86 kb)


  1. 1.
    Berger J, Moller DE (2002) Annu Rev Med 53:409CrossRefGoogle Scholar
  2. 2.
    Willson TM, Lambert MH, Kliewer SA (2001) Annu Rev Biochem 70:341CrossRefGoogle Scholar
  3. 3.
    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) J Biol Chem 270:12953CrossRefGoogle Scholar
  4. 4.
    Feldman PL, Lambert MH, Henke BR (2008) Curr Top Med Chem 8:728CrossRefGoogle Scholar
  5. 5.
    Pourcet B, Fruchart J, Staels B, Glineur C (2006) Expert Opin Emerg Drugs 11:379CrossRefGoogle Scholar
  6. 6.
    Jones D (2010) Nat Rev Drug Discov 9:668CrossRefGoogle Scholar
  7. 7.
    Gelman L, Feige JN, Desvergne B (2007) Biochim Biophys Acta 1771:1094Google Scholar
  8. 8.
    Grether U, Klaus W, Kuhn B, Maerki HP, Mohr P, Wright MB (2010) ChemMedChem 5:1973CrossRefGoogle Scholar
  9. 9.
    Farce A, Renault N, Chavatte P (2009) Curr Med Chem 16:1768CrossRefGoogle Scholar
  10. 10.
    Zoete V, Grosdidier A, Michielin O (2007) Biochim Biophys Acta 1771:915Google Scholar
  11. 11.
    Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S, Loiodice F, Fracchiolla G, Tortorella P, Laghezza A, Lavecchia A, Novellino E, Mazza F, Crestani M (2007) J Biol Chem 282:17314CrossRefGoogle Scholar
  12. 12.
    Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, Nettles KW, Griffin PR (2007) Structure 15:1258CrossRefGoogle Scholar
  13. 13.
    Montanari R, Saccoccia F, Scotti E, Crestani M, Godio C, Gilardi F, Loiodice F, Fracchiolla G, Laghezza A, Tortorella P, Lavecchia A, Novellino E, Mazza F, Aschi M, Pochetti G (2008) J Med Chem 51:7768CrossRefGoogle Scholar
  14. 14.
    Lu I, Huang C, Peng Y, Lin Y, Hsieh H, Chen C, Lien T, Lee H, Mahindroo N, Prakash E, Yueh A, Chen H, Goparaju CMV, Chen X, Liao C, Chao Y, Hsu JT, Wu S (2006) J Med Chem 49:2703CrossRefGoogle Scholar
  15. 15.
    Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM (2010) Nature 466:451CrossRefGoogle Scholar
  16. 16.
    Houtkooper RH, Auwerx J (2010) Nature 466:443CrossRefGoogle Scholar
  17. 17.
    Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM (1996) J Med Chem 39:665CrossRefGoogle Scholar
  18. 18.
    Dropinski JF, Akiyama T, Einstein M, Habulihaz B, Doebber T, Berger JP, Meinke PT, Shi GQ (2005) Bioorg Med Chem Lett 15:5035CrossRefGoogle Scholar
  19. 19.
    Liu W, Liu K, Wood HB, McCann ME, Doebber TW, Chang CH, Akiyama TE, Einstein M, Berger JP, Meinke PT (2009) J Med Chem 52:4443CrossRefGoogle Scholar
  20. 20.
    Acton JJ, Black RM, Jones AB, Moller DE, Colwell L, Doebber TW, Macnaul KL, Berger J, Wood HB (2005) Bioorg Med Chem Lett 15:357CrossRefGoogle Scholar
  21. 21.
    Liu K, Black RM, Acton JJ, Mosley R, Debenham S, Abola R, Yang M, Tschirret-Guth R, Colwell L, Liu C, Wu M, Wang CF, MacNaul KL, McCann ME, Moller DE, Berger JP, Meinke PT, Jones AB, Wood HB (2005) Bioorg Med Chem Lett 15:2437CrossRefGoogle Scholar
  22. 22.
    Debenham SD, Chan A, Lau FW, Liu W, Wood HB, Lemme K, Colwell L, Habulihaz B, Akiyama TE, Einstein M, Doebber TW, Sharma N, Wang CF, Wu M, Berger JP, Meinke PT (2008) Bioorg Med Chem Lett 18:4798CrossRefGoogle Scholar
  23. 23.
    Thor M, Beierlein K, Dykes G, Gustavsson AL, Heidrich J, Jendeberg L, Lindqvist B, Pegurier C, Roussel P, Slater M, Svensson S, Sydow-Bäckman M, Thornström U, Uppenberg J (2002) Bioorg Med Chem Lett 12:3565CrossRefGoogle Scholar
  24. 24.
    Hopkins CR, O’neil SV, Laufersweiler MC, Wang Y, Pokross M, Mekel M, Evdokimov A, Walter R, Kontoyianni M, Petrey ME, Sabatakos G, Roesgen JT, Richardson E, Demuth TP (2006) Bioorg Med Chem Lett 16:5659CrossRefGoogle Scholar
  25. 25.
    Lamotte Y, Martres P, Faucher N, Laroze A, Grillot D, Ancellin N, Saintillan Y, Beneton V, Gampe RT (2010) Bioorg Med Chem Lett 20:1399CrossRefGoogle Scholar
  26. 26.
    Goebel M, Clemenz M, Staels B, Unger T, Kintscher U, Gust R (2009) ChemMedChem 4:445CrossRefGoogle Scholar
  27. 27.
    Goebel M, Staels B, Unger T, Kintscher U, Gust R (2009) ChemMedChem 4:1136CrossRefGoogle Scholar
  28. 28.
    Seto S, Okada K, Kiyota K, Isogai S, Iwago M, Shinozaki T, Kitamura Y, Kohno Y, Murakami K (2010) J Med Chem 53:5012CrossRefGoogle Scholar
  29. 29.
    Furukawa A, Arita T, Satoh S, Wakabayashi K, Hayashi S, Matsui Y, Araki K, Kuroha M, Ohsumi J (2010) Bioorg Med Chem Lett 20:2095CrossRefGoogle Scholar
  30. 30.
    Garcia-Vallvé S, Palau J, Romeu A (1999) Mol Biol Evol 16:1125Google Scholar
  31. 31.
    Salam NK, Nuti R, Sherman W (2009) J Chem Inf Model 49:2356CrossRefGoogle Scholar
  32. 32.
    Wolber G, Langer T (2005) J Chem Inf Model 45:160CrossRefGoogle Scholar
  33. 33.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) J Comput Aided Mol Des 20:647CrossRefGoogle Scholar
  34. 34.
    Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2009) Mini Rev Med Chem 9:1075CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Laura Guasch
    • 1
  • Esther Sala
    • 1
  • Cristina Valls
    • 1
  • Mayte Blay
    • 1
  • Miquel Mulero
    • 1
  • Lluís Arola
    • 1
    • 2
  • Gerard Pujadas
    • 1
    • 2
  • Santiago Garcia-Vallvé
    • 1
    • 2
    Email author
  1. 1.Grup de Recerca en Nutrigenòmica, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona, CataloniaSpain
  2. 2.CTNS, Centre Tecnològic de Nutrició i SalutReusSpain

Personalised recommendations