Journal of Computer-Aided Molecular Design

, Volume 25, Issue 7, pp 637–647 | Cite as

Visualisation and subsets of the chemical universe database GDB-13 for virtual screening

  • Lorenz C. Blum
  • Ruud van Deursen
  • Jean-Louis Reymond
Article

Abstract

The chemical universe database GDB-13, which enumerates 977 million organic molecules up to 13 atoms of C, N, O, S and Cl following simple chemical stability and synthetic feasibility rules, represents a vast reservoir for new fragments. GDB-13 was classified using the MQN-system discussed in the preceding paper for the analysis of PubChem fragments. Two hundred and fifty-five subsets of GDB-13 were generated by the combinatorial use of eight restrictive criteria, including fragment-like (“rule of three”) and scaffold-like (no acyclic carbon atoms) filters. Virtual screening for analogs of 15 commercial drugs of 13 non-hydrogen atoms or less shows that retrieving MQN-neighbors of a query molecule from GDB-13 or its subsets provides on average a 38-fold enrichment in structural analogs (Daylight-type substructure fingerprint Tanimoto T SF > 0.7), and a 75-fold enrichment in shape-similar analogs (ROCS TanimotoCombo score > 1.4). An MQN-searchable version of GDB-13 is provided at www.gdb.unibe.ch.

Graphical Abstract

Keywords

Databases Virtual screening Chemical space Enumeration Fragments 

Notes

Acknowledgments

This work was supported financially by the University of Berne, the Swiss National Science Foundation and the Office Fédéral Suisse de l’Education et de la Science.

References

  1. 1.
    Coyne AG, Scott DE, Abell C (2010) Drugging challenging targets using fragment-based approaches. Curr Opin Chem Biol 14:299–307CrossRefGoogle Scholar
  2. 2.
    Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharmacol 9:615–621CrossRefGoogle Scholar
  3. 3.
    Hartenfeller M, Schneider G (2011) De novo drug design. Methods Mol Biol 672:299–323CrossRefGoogle Scholar
  4. 4.
    Venhorst J, Nunez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1:499–503CrossRefGoogle Scholar
  5. 5.
    Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10:987–992CrossRefGoogle Scholar
  6. 6.
    Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672CrossRefGoogle Scholar
  7. 7.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219CrossRefGoogle Scholar
  8. 8.
    Boyd SM, de Kloe GE (2010) Fragment library design: efficiently hunting drugs in chemical space. Drug Discov Today 7:e173–e180CrossRefGoogle Scholar
  9. 9.
    Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633CrossRefGoogle Scholar
  10. 10.
    van Deursen R, Blum LC, Reymond JL (2011) Visualisation of the chemical space of fragments, lead-like and drug-like molecules in PubChem. J Comput Aided Mol Des. doi: 10.1007/s10822-011-9437-x
  11. 11.
    Blum LC, Reymond JL (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732–8733CrossRefGoogle Scholar
  12. 12.
    Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 daltons. Angew Chem Int Ed Engl 44:1504–1508CrossRefGoogle Scholar
  13. 13.
    Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353CrossRefGoogle Scholar
  14. 14.
    Nguyen KT, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL (2008) Discovery of NMDA glycine site inhibitors from the chemical universe database GDB. ChemMedChem 3:1520–1524CrossRefGoogle Scholar
  15. 15.
    Nguyen KT, Luethi E, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL (2009) 3-(aminomethyl)piperazine-2, 5-dione as a novel NMDA glycine site inhibitor from the chemical universe database GDB. Bioorg Med Chem Lett 19:3832–3835CrossRefGoogle Scholar
  16. 16.
    Luethi E, Nguyen KT, Burzle M, Blum LC, Suzuki Y, Hediger M, Reymond JL (2010) Identification of selective norbornane-type aspartate analogue inhibitors of the glutamate transporter 1 (GLT-1) from the chemical universe generated database (GDB). J Med Chem 53:7236–7250CrossRefGoogle Scholar
  17. 17.
    Garcia-Delgado N, Bertrand S, Nguyen KT, van Deursen R, Bertrand D, Reymond J-L (2010) Exploring a7-nicotinic receptor ligand diversity by scaffold enumeration from the chemical universe database GDB. ACS Med Chem Lett 1:422–426CrossRefGoogle Scholar
  18. 18.
    Reymond JL, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Commun 1:30–38CrossRefGoogle Scholar
  19. 19.
    Nguyen KT, Blum LC, van Deursen R, Reymond JL (2009) Classification of organic molecules by molecular quantum numbers. ChemMedChem 4:1803–1805CrossRefGoogle Scholar
  20. 20.
    Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discov Des 9–11:339–353CrossRefGoogle Scholar
  21. 21.
    Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216CrossRefGoogle Scholar
  22. 22.
    Akella LB, DeCaprio D (2010) Cheminformatics approaches to analyze diversity in compound screening libraries. Curr Opin Chem Biol 14:325–330CrossRefGoogle Scholar
  23. 23.
    Irwin JJ, Shoichet BK (2005) ZINC—A free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182CrossRefGoogle Scholar
  24. 24.
    van Deursen R, Blum LC, Reymond JL (2010) A searchable map of PubChem. J Chem Inf Model 50:1924–1934CrossRefGoogle Scholar
  25. 25.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801CrossRefGoogle Scholar
  26. 26.
    Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996Google Scholar
  27. 27.
    Rush TS III, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489–1495CrossRefGoogle Scholar
  28. 28.
    McKay BD (1981) Practical graph isomorphism. Congr Numerantium 30:45–87Google Scholar
  29. 29.
    Warr WA (1993) Computer-assisted structure elucidation. Part II: indirect database approaches and established systems. Anal Chem 65:1087A–1095ACrossRefGoogle Scholar
  30. 30.
    Steinbeck C (2004) Recent developments in automated structure elucidation of natural products. Nat Prod Rep 21:512–518CrossRefGoogle Scholar
  31. 31.
    Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:8CrossRefGoogle Scholar
  32. 32.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A rule of three for fragment-based lead discovery? Drug Discov Today 8:876–877CrossRefGoogle Scholar
  33. 33.
    Kolb P, Ferreira RS, Irwin JJ, Shoichet BK (2009) Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 20:429–436CrossRefGoogle Scholar
  34. 34.
    Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053CrossRefGoogle Scholar
  35. 35.
    Khalifa AA, Haranczyk M, Holliday J (2009) Comparison of nonbinary similarity coefficients for similarity searching, clustering and compound selection. J Chem Inf Model 49:1193–1201CrossRefGoogle Scholar
  36. 36.
    Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82CrossRefGoogle Scholar
  37. 37.
    Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886CrossRefGoogle Scholar
  38. 38.
    Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896CrossRefGoogle Scholar
  39. 39.
    Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lorenz C. Blum
    • 1
    • 2
  • Ruud van Deursen
    • 1
    • 2
  • Jean-Louis Reymond
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland
  2. 2.Swiss National Center of Competence in Research, NCCR-TransCureUniversity of BerneBerneSwitzerland

Personalised recommendations