Advertisement

Journal of Computer-Aided Molecular Design

, Volume 24, Issue 4, pp 357–360 | Cite as

Blind prediction test of free energies of hydration with COSMO-RS

  • Andreas KlamtEmail author
  • Michael Diedenhofen
Article

Abstract

The COSMO-RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with COSMO-RS, a statistical thermodynamics treatment of surface interactions, simulations, has been used for the direct, blind prediction of free energies of hydration within the SAMPL challenge. Straight application of the latest version of the COSMOtherm implementation in combination with a rigorous conformational sampling yielded a predictive accuracy of 1.56 kcal/mol (RMSE) for the 23 compounds of the blind prediction dataset. Due to the uncertainties of the extrapolations and assumptions involved in the derivation of the experimental data, the accuracy of the predicted data may be considered to be within the noise level of the experimental data.

Keywords

Solvation COSMO-RS 

References

  1. 1.
    For details see introductory paper of this special issue: Skillman, Geballe, Guthrie, JCAMD, 2010, Volume 24Google Scholar
  2. 2.
    Eckert F, Klamt A (2008) COSMOtherm, Version C2.1-Revision 01.08; COSMOlogic GmbH&CoKG, Leverkusen, Germany (2008); see also URL: http://www.cosmologic.de
  3. 3.
    Klamt A (1995) J Phys Chem 99:2224CrossRefGoogle Scholar
  4. 4.
    Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) J Phys Chem 102:5074Google Scholar
  5. 5.
    Klamt A (2005) COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  7. 7.
    Klamt A, Eckert F, Diedenhofen M (in print) JCAMD 2010, 24 (in print)Google Scholar
  8. 8.
    Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2033CrossRefGoogle Scholar
  9. 9.
    Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) Acc Chem Res 42:489–492CrossRefGoogle Scholar
  10. 10.
    Klamt A, Eckert F, Diedenhofen M (2009) J Phys Chem B 113:4508–4510CrossRefGoogle Scholar
  11. 11.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  12. 12.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  13. 13.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  14. 14.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119Google Scholar
  15. 15.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 242:652CrossRefGoogle Scholar
  16. 16.
    TURBOMOLE, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; see also URL: http://www.turbomole.com
  17. 17.
    Eckert F, Klamt A (2008) COSMObase, Version C2.1-Revision 01.08; COSMOlogic GmbH&CoKG, Leverkusen, Germany (2008); see also URL: http://www.cosmologic.de
  18. 18.
    Peter Guthrie, University of Western Ontario, private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.COSMOlogic GmbH&CoKGLeverkusenGermany
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations