Tautomers and reference 3D-structures: the orphans of in silico drug design

Article

Abstract

The importance of calculating not only the correct tautomer, but also the correct protonation state and conformation in 3D modeling applications is emphasized. Above all, identifying and characterizing the most stable form of a ligand under physiological conditions is seen to be the key to successful 3D modeling. Modeling strategies that make use of the performance of modern hardware can employ physically more appropriate models than most currently in use and still be easily applicable to large numbers of compounds. Because the performance of quantitative structure–property relationships is likely to be limited by the available training and validation data, we must either find new sources of such data or resort to explicit modeling, which can partly be parameterized using definitive ab initio calculations for reference data such as gas-phase proton affinities.

Keywords

Tautomers QSPR Force fields pKa 

References

  1. 1.
    Pospisil P, Ballmer P, Scapozza L, Folkers G (2003) Tautomerism in computer-aided drug design. J Recept Signal Transduct Res 23:361–371CrossRefGoogle Scholar
  2. 2.
    Elgueor J, Marzin C, Katritzky AR, Lind P (1975) The tautomerism of heterocycles. Adv Heterocycl Chem Suppl 1:1–656Google Scholar
  3. 3.
    Beak P (1997) Energies and alkylations of tautomeric hetericyclic compounds: old problems—new answers. Acc Chem Res 10:186–192CrossRefGoogle Scholar
  4. 4.
    Oellien F, Cramer J, Bayer C, Ihlenfeldt WD, Selzer PM (2006) The impact of tautomer forms on pharmacophore-based virtual screening. J Chem Inf Model 46:2342–2354CrossRefGoogle Scholar
  5. 5.
    Seidel T, Wolber G, Langer T (2008) Tautomerism in structure-based 3D pharmacophore modeling. Chem Cent J 2(suppl):11CrossRefGoogle Scholar
  6. 6.
    Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75CrossRefGoogle Scholar
  7. 7.
    Marvin C (2010) http://www.chemaxon.com/product/tautomer.html. Accessed 13 Jan 2010
  8. 8.
    SPARC (2010) http://sparc.chem.uga.edu/sparc/. Accessed 15 March 2010
  9. 9.
    Watson JD (1980) In: Stent GS (ed) The double helix; a personal account of the discovery of the structure of DNA, a norton critical edition. W. W. Norton, New YorkGoogle Scholar
  10. 10.
    Othersen OG, Waibel R, Lanig H, Gmeiner P, Clark T (2006) An SCRF-DFT and NMR comparison of tetracycline and 5a, 6-anhydrotetracycline in solution. J Phys Chem B 110:24766–24774CrossRefGoogle Scholar
  11. 11.
    Milletti F, Storchi L, Sforna G, Cruciani G (2007) J Chem Inf Model 47:2172–2181CrossRefGoogle Scholar
  12. 12.
    Kramer C, Beck B, Clark T (2010) Insolubility classification with accurate prediction probabilities using a MetaClassifier. J Chem Inf Model 50:404–414CrossRefGoogle Scholar
  13. 13.
    Clark T (2003) Modelling the chemistry: time to break the mould? In: Ford M, Livingstone D, Dearden J, van der Waterbeemd H (eds) EuroQSAR 2002: designing drugs and crop protectants. Blackwell, Oxford, pp 111–121Google Scholar
  14. 14.
    Kramer C, Beck B, Clark T (2010) A surface-integral model for logPOW. J Chem Inf Model 50:429–436. doi:10.1021/ci900377e CrossRefGoogle Scholar
  15. 15.
    Kramer C, Heinisch T, Fligge T, Beck B, Clark T (2009) A consistent kinetic solubility dataset for early-phase drug discovery. ChemMedChem 4:1529–1536CrossRefGoogle Scholar
  16. 16.
    Ho J, Coote ML (2010) A universal approach for continuum solvent pKa calculations: are we there yet? Theor Chem Acc 125:3–21CrossRefGoogle Scholar
  17. 17.
    Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230CrossRefGoogle Scholar
  18. 18.
    Curtiss LA, Raghavachari K, Pople JA (1993) Gaussian-2 theory using reduced Møller–Plesset orders. J Chem Phys 98:1293–1298CrossRefGoogle Scholar
  19. 19.
    Curtiss LA, Raghavachari K, Pople JA (1993) The accurate determination of enthalpies of formation. Chem Phys Lett 214:183–185CrossRefGoogle Scholar
  20. 20.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776CrossRefGoogle Scholar
  21. 21.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Møller–Plesset order. J Chem Phys 110:4703–4709CrossRefGoogle Scholar
  22. 22.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657CrossRefGoogle Scholar
  23. 23.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Approximating correlation effects in multiconfigurational self-consistent field calculations of spin–spin coupling constants. J Chem Phys 126:084108CrossRefGoogle Scholar
  24. 24.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105CrossRefGoogle Scholar
  25. 25.
    Martin JML (2005) Computational thermochemistry: a brief overview of quantum mechanical approaches. Ann Rep Comput Chem 1:31–43CrossRefGoogle Scholar
  26. 26.
    Danikiewicz W (2009) How reliable are gas-phase proton affinity values of small carbanions? A comparison of experimental data with values calculated using Gaussian-3 and CBS compound methods. Int J Mass Spectr 285:86–94CrossRefGoogle Scholar
  27. 27.
    Dixon DA, Lias SG (1987) Absolute values of gas proton affinities and basicities of molecules: a comparison between theory and experiment. Mol Struct Energ 2:269–314Google Scholar
  28. 28.
    Burkert U, Allinger NL (1982) Molecular mechanics, ACS Monograph 177. American Chemical Society, Washington, DCGoogle Scholar
  29. 29.
    Allinger NL, Chen K, Lii J-H (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17:642–668CrossRefGoogle Scholar
  30. 30.
    Nevins N, Chen K, Allinger NL (1996) Molecular mechanics (MM4) calculations on alkenes. J Comput Chem 17:669–694Google Scholar
  31. 31.
    Nevins N, Lii JH, Allinger NL (1996) Molecular mechanics (MM4) calculations on conjugated hydrocarbons. J Comput Chem 17:695–729Google Scholar
  32. 32.
    Allinger NL, Chen K, Katzenellenbogen JA, Wilson SR, Anstead GM (1996) J Comput Chem 17:747–755CrossRefGoogle Scholar
  33. 33.
    Reindl B, Clark T, Schleyer PVR (1996) A new method for empirical force field calculations on localized and delocalized carbocations. J Comput Chem 17:1406–1430CrossRefGoogle Scholar
  34. 34.
    Reindl B, Clark T, Schleyer PVR (1996) Empirical force-field and ab initio calculations on delocalized open chain cations. J Comput Chem 18:28–44CrossRefGoogle Scholar
  35. 35.
    Reindl B, Clark T, Schleyer PVR (1998) Empirical force field and ab initio calculations on allyl cations. J Comput Chem 18:533–551CrossRefGoogle Scholar
  36. 36.
    Reindl B, Clark T, Schleyer PVR (1998) Modern molecular mechanics and ab initio calculations on benzylic and cyclic delocalized cations. J Phys Chem A 102:8953–8963CrossRefGoogle Scholar
  37. 37.
    Sprague JT, Tai JC, Yuh Y, Allinger NL (1987) The MMP2 calculational method. J Comput Chem 8:581–603CrossRefGoogle Scholar
  38. 38.
    Warshel A, Kato M, Pisliakov AV (2007) Polarizable force fields: history, test cases, and prospects. J Chem Theor Comput 3:2034–2045CrossRefGoogle Scholar
  39. 39.
    Patel S, Brooks CL III (2006) Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems. Mol Sim 32:231–249CrossRefGoogle Scholar
  40. 40.
    Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 2001(11):236–242CrossRefGoogle Scholar
  41. 41.
    Devereux M, Plattner N, Meuwly M (2009) Application of multipolar charge models and molecular dynamics simulations to study stark shifts in inhomogeneous electric fields. J Phys Chem A 113:13199–13209CrossRefGoogle Scholar
  42. 42.
    Plattner N, Bandi T, Doll JD, Freeman DL, Meuwly M (2008) MD simulations using distributed multipole electrostatics: structural and spectroscopic properties of CO- and methane-containing clathrates. Mol Phys 106:1675–1684CrossRefGoogle Scholar
  43. 43.
    Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519CrossRefGoogle Scholar
  44. 44.
    Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552CrossRefGoogle Scholar
  45. 45.
    Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586CrossRefGoogle Scholar
  46. 46.
    Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. conformational energies and geometries for MMFF94. J Comput Chem 17:587–615Google Scholar
  47. 47.
    Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641CrossRefGoogle Scholar
  48. 48.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  49. 49.
    Kelly CP, Cramer CJ, Truhlar DG (2005) SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute–water clusters. J Chem Theor Comput 1:1133–1152CrossRefGoogle Scholar
  50. 50.
    Thompson JD, Cramer CJ, Truhlar DG (2005) Density-functional theory and hybrid density-functional theory continuum solvation models for aqueous and organic solvents: universal SM5.43 and SM5.43R solvation models for any fraction of Hartree-Fock exchange. Theor Chem Acc 113:107–131CrossRefGoogle Scholar
  51. 51.
    Giesen DJ, Hawkins GD, Liotard DA, Cramer CJ, Truhlar DG (1997) A universal model for the quantum mechanical calculation of free energies of solvation in non-aqueous solvents. Theor Chem Acc 98:85–109Google Scholar
  52. 52.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094CrossRefGoogle Scholar
  53. 53.
    Viswanadhan VN, Ghose AK, Wendoloski JJ (2000) Estimating aqueous solvation and lipophilicity of small organic molecules: a comparative overview of atom/group contribution methods. Perspect Drug Discov Design 19:85–98CrossRefGoogle Scholar
  54. 54.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805Google Scholar
  55. 55.
    Soteras I, Curutchet C, Bidon-Chanal A, Orozco M, Luque FJ (2005) Extension of the MST model to the IEF formalism: HF and B3LYP parametrizations. J Mol Struct (THEOCHEM) 727:29–40CrossRefGoogle Scholar
  56. 56.
    Curutchet C, Orozco M, Luque FJ (2001) Solvation in octanol: parametrization of the continuum MST model. J Comput Chem 22:1180–1193CrossRefGoogle Scholar
  57. 57.
    Pierotti RA (1976) A scaled particle theory of aqueous and nonaqueous solutions. Chem Rev 76:717–726CrossRefGoogle Scholar
  58. 58.
    Hansen-Goos H, Roth R, Mecke K, Dietrich S (2007) Solvation of proteins: linking thermodynamics to geometry. Phys Rev Lett 99:128101CrossRefGoogle Scholar
  59. 59.
    Hansen-Goos H, Mecke K (2009) Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Phys Rev Lett 102:018302CrossRefGoogle Scholar
  60. 60.
    Marenich AV, Cramer CJ, Truhlar DJ (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  61. 61.
    Cramer CJ, Truhlar DJ (2008) A universal approach to solvation modeling. Acc Chem Res 41:760–768CrossRefGoogle Scholar
  62. 62.
    Torrie G, Valleau J (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28:578–581CrossRefGoogle Scholar
  63. 63.
    Cheng A, Best SA, Merz KM, Reynolds CH (2000) GB/SA water model for the Merck molecular force field (MMFF). J Mol Graph Model 18:273–282CrossRefGoogle Scholar
  64. 64.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  65. 65.
    Reulecke I, Lange G, Albrecht J, Klein R, Rarey M (2008) Towards an integrated description of hydrogen bonding and dehydration: decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem 3:885–897CrossRefGoogle Scholar
  66. 66.
    Politzer P, Murray JS, Concha MC (2008) σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665CrossRefGoogle Scholar
  67. 67.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  68. 68.
    Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem 97:8050–8053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Computer-Chemie-CentrumFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Centre for Molecular DesignUniversity of PortsmouthPortsmouthUK

Personalised recommendations