Journal of Computer-Aided Molecular Design

, Volume 24, Issue 4, pp 293–306 | Cite as

SAMPL2 and continuum modeling

  • Anthony Nicholls
  • Stanislaw WlodekEmail author
  • J. Andrew Grant


An account is given of our contributions to the SAMPL2 challenge for vacuum-water transfer energies. These contributions include different charge sets and radii used with Poisson–Boltzmann continuum theory applied to a single low-energy conformation. A rationale for this approach is given, including a summary of what we have learnt over previous SAMPL events. The results strongly suggest the need for new and repeated experimental measurements, both to clarify what appears to be experimental discrepancies in older measurements and to advance the field in a statistically sound manner.


Solvation Free energy Continuum dielectric 

Supplementary material

10822_2010_9334_MOESM1_ESM.pdb (49 kb)
(PDB 50 kb)
10822_2010_9334_MOESM2_ESM.pdb (49 kb)
(PDB 50 kb)
10822_2010_9334_MOESM3_ESM.pdb (49 kb)
(PDB 50 kb)
10822_2010_9334_MOESM4_ESM.pdb (49 kb)
(PDB 52 kb)
10822_2010_9334_MOESM5_ESM.pdb (39 kb)
(PDB 40 kb)
10822_2010_9334_MOESM6_ESM.pdb (39 kb)
(PDB 40 kb)


  1. 1.
    Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779CrossRefGoogle Scholar
  2. 2.
    Skillman AG, Nicholls A (2008) SAMPL2: statistical analysis of the modeling of proteins and ligandsGoogle Scholar
  3. 3.
    Nicholls A, Wlodek S, Grant JA (2009) The SAMP1 solvation challenge: further lessons regarding the pitfalls of parametrization. J Phys Chem B 113(14):4521–4532CrossRefGoogle Scholar
  4. 4.
    Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Truhlar DG (2006) A density functional that accounts for medium-range correlation energies in organic chemistry. Org Lett 8(25):5753–5755CrossRefGoogle Scholar
  6. 6.
    Grant AJ, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson–Boltzmann solvation methods. J Comp Chem 22:608–640CrossRefGoogle Scholar
  7. 7.
    Gilson M, Rashin A, Fine R, Honig B (1985) On the calculation of electrostatic interactions in proteins. J Mol Biol 184:503–516CrossRefGoogle Scholar
  8. 8.
    Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J Comp Chem 12(4):435–445CrossRefGoogle Scholar
  9. 9.
  10. 10.
  11. 11.
    Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268(5–6):345–351CrossRefGoogle Scholar
  12. 12.
    Gaussian I.
  13. 13.
    Singh UC, Kollman PA (1994) An approach to computing electrostatic charges for molecules. J Comp Chem 5(2):129–145CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Ellingson BA, Skillman AG, Nicholls A (2010) Analysis of SM8 and Zap TK calculations and their geometric sensitivity. JCAMD 24. doi: 10.1007/s10822-010-9355-3
  16. 16.
    Bondi A (1964) J Phys Chem 64:441CrossRefGoogle Scholar
  17. 17.
    Kelly CP, Cramer CJ, Truhlar DG (2005) SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J Chem Theory Comput 1:1133–1152CrossRefGoogle Scholar
  18. 18.
    Sharp KA, Nicholls A, Fine RF, Honig B (1991) Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252(5002):106–109CrossRefGoogle Scholar
  19. 19.
    Jones FM, Arnett EM (1974) Prog Phys Org Chem 11:263–322CrossRefGoogle Scholar
  20. 20.
    Ben-Naim A, Marcus Y (1984) J Chem Phys 81:2016–2027CrossRefGoogle Scholar
  21. 21.
    Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788CrossRefGoogle Scholar
  22. 22.
    Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. JACS 121:4827–4836CrossRefGoogle Scholar
  23. 23.
    McClellan AL (1963) Tables of experimental dipole moments, 1st edn. W. H. Freeman and Co., New YorkGoogle Scholar
  24. 24.
    Mobley DL, Dill KA, Chodera JD (2008) Treating entropy and conformational changes in implicit solvent simulations of small molecules. J Phys Chem B 112(3):938–946CrossRefGoogle Scholar
  25. 25.
    Rashin AA, Honig B (1985) Reevaluation of the Born model of ion hydration. J Phys Chem 89(26):5588–5593CrossRefGoogle Scholar
  26. 26.
    Geballe M, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. JCAMD 24. doi: 10.1007/s10822-010-9350-8
  27. 27.
    Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947CrossRefGoogle Scholar
  28. 28.
    Lide DR (ed) (1998) CRC handbook of chemistry and physics, 79th edn. CRC Press, Boco RatonGoogle Scholar
  29. 29.
    Gallicchio E, Zhang LY, Levy RM (2002) The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. J Comput Chem 23(5):517–529CrossRefGoogle Scholar
  30. 30.
    Sitkoff D, Sharp K, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988CrossRefGoogle Scholar
  31. 31.
    Bordner AJ, Cavasotto CN, Abagyan RA (2002) Accurate transferable model for water, n-Octanol and n-Hexadecane solvation free energies. J Phys Chem B 106:11009–11015CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anthony Nicholls
    • 1
  • Stanislaw Wlodek
    • 1
    Email author
  • J. Andrew Grant
    • 2
  1. 1.OpenEye Scientific Software, IncSanta FeUSA
  2. 2.AstraZeneca PharmaceuticalsMereside, MacclesfieldCheshire, UK

Personalised recommendations