Journal of Computer-Aided Molecular Design

, Volume 24, Issue 4, pp 317–333 | Cite as

Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models

  • Raphael F. Ribeiro
  • Aleksandr V. Marenich
  • Christopher J. CramerEmail author
  • Donald G. TruhlarEmail author


We applied the solvation models SM8, SM8AD, and SMD in combination with the Minnesota M06-2X density functional to predict vacuum-water transfer free energies (Task 1) and tautomeric ratios in aqueous solution (Task 2) for the SAMPL2 test set. The bulk-electrostatic contribution to the free energy of solvation is treated as follows: SM8 employs the generalized Born model with the Coulomb field approximation, SM8AD employs the generalized Born approximation with asymmetric descreening, and SMD solves the nonhomogeneous Poisson equation. The non-bulk-electrostatic contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell is treated as a sum of terms that are products of geometry-dependent atomic surface tensions and solvent-accessible surface areas of the individual atoms of the solute. On average, three models tested in the present work perform similarly. In particular, we achieved mean unsigned errors of 1.3 (SM8), 2.0 (SM8AD), and 2.6 kcal/mol (SMD) for the aqueous free energies of 30 out of 31 compounds with known reference data involved in Task 1 and mean unsigned errors of 2.7 (SM8), 1.8 (SM8AD), and 2.4 kcal/mol (SMD) in the free energy differences (tautomeric ratios) for 21 tautomeric pairs in aqueous solution involved in Task 2.


Free energy Generalized Born Implicit solvation Poisson equation Solvation Solvation modeling Tautomerism 



This work was supported by the Office of Naval Research under Grant N 00014-05-01-0538, the Army Research Office under Grant US ARMY RES LAB/W911NF09-1-0377, and the National Science Foundation (Grant CHE06-10183 and Grant CHE07-04974). Computational resources were provided by the Minnesota Supercomputing Institute.

Supplementary material

10822_2010_9333_MOESM1_ESM.pdf (37 kb)
Supplementary material 1 (PDF 36 kb)


  1. 1.
    Bamborough P, Cohen FE (1996) Modeling protein-ligand complexes. Curr Opin Struct Biol 6(2):236–241CrossRefGoogle Scholar
  2. 2.
    Pei J, Wang Q, Zhou J, Lai L (2004) Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation. Proteins 54(4):651–664CrossRefGoogle Scholar
  3. 3.
    Schiffer CA, Caldwell JW, Stroud RM, Kollman PA (1992) Inclusion of solvation free energy with molecular mechanics: alanyl dipeptide as a test case. Protein Sci 1(3):396–400CrossRefGoogle Scholar
  4. 4.
    Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93(7):2395–2417CrossRefGoogle Scholar
  5. 5.
    Rivail J-L, Rinaldi DL, Ruiz-Lopez MF (1991) The self-consistent reaction field model for molecular computations in solution. In: Formosinho SJ, Arnaut L, Csizmadia I (eds) Theoretical and computational models for organic chemistry. Kluwer Academic Publishers, Dordrecht, pp 79–92Google Scholar
  6. 6.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7):2027–2094CrossRefGoogle Scholar
  7. 7.
    Hawkins GD, Zhu T, Li J, Chambers CC, Giesen DJ, Liotard DA, Cramer CJ, Truhlar DG (1998) Universal solvation models. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods, American Chemical Society, Symposium Series, vol 712, Washington, pp. 201–219Google Scholar
  8. 8.
    Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99(8):2161–2200CrossRefGoogle Scholar
  9. 9.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094CrossRefGoogle Scholar
  10. 10.
    Mennucci B, Cammi R (eds) (2008) Continuum solvation models in chemical physics: from theory to applications. Wiley, New YorkGoogle Scholar
  11. 11.
    Hoijtink GJ, de Boer E, van der Meij PH, Weijland WP (1956) Reduction potentials of various aromatic hydrocarbons and their univalent anions. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique 75:487–503Google Scholar
  12. 12.
    Tucker SC, Truhlar DG (1989) Generalized born fragment charge model for solvation effects as a function of reaction coordinate. Chem Phys Lett 157(1–2):164–170CrossRefGoogle Scholar
  13. 13.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112(16):6127–6129CrossRefGoogle Scholar
  14. 14.
    Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges. J Chem Theory Comput 3(6):2011–2033CrossRefGoogle Scholar
  15. 15.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on the generalized Born approximation with asymmetric descreening. J Chem Theory Comput 5(9):2447–2464CrossRefGoogle Scholar
  16. 16.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  17. 17.
    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (Theochem) 464(1):211–226CrossRefGoogle Scholar
  18. 18.
    Grycuk T (2003) Deficiency of the coulomb-field approximation in the generalized Born model: an improved formula for Born radii evaluation. J Chem Phys 119(9):4817–4826CrossRefGoogle Scholar
  19. 19.
    Storer JW, Giesen DJ, Cramer CJ, Truhlar DG (1995) Class IV charge models: a new semiempirical approach in quantum chemistry. J Comp-Aided Mol Des 9:87–110CrossRefGoogle Scholar
  20. 20.
    Kelly CP, Cramer CJ, Truhlar DG (2005) SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J Chem Theory Comput 1(6):1133–1152CrossRefGoogle Scholar
  21. 21.
    Olson RM, Marenich AV, Cramer CJ, Truhlar DG (2007) Charge Model 4 and intramolecular charge polarization. J Chem Theory Comput 3(6):2046–2054CrossRefGoogle Scholar
  22. 22.
    Baldridge K, Klamt A (1997) First principles implementation of solvent effects without outlying charge error. J Chem Phys 106:6622–6633CrossRefGoogle Scholar
  23. 23.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113(14):4538–4543CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and twelve other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  25. 25.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3666CrossRefGoogle Scholar
  26. 26.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chimica Acta 28(3):213–222CrossRefGoogle Scholar
  27. 27.
    Lynch BJ, Zhao Y, Truhlar DG (2003) Effectiveness of diffuse basis functions for calculating relative energies by density functional theory. J Phys Chem A 107(9):1384–1388CrossRefGoogle Scholar
  28. 28.
    Bryantsev VS, Diallo MS, Goddard WA (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719CrossRefGoogle Scholar
  29. 29.
    Lynch BJ, Zhao Y, Truhlar DG (2005) The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods. J Phys Chem A 109(8):1643–1649CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Martin KomaromiI, RL FoxDJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, revision E.01. Gaussian Inc., PittsburghGoogle Scholar
  31. 31.
    MN-GFM (2008) Minnesota gaussian functional module, version 4.1. University of Minnesota, MinneapolisGoogle Scholar
  32. 32.
    MN-GSM (2009) Minnesota gaussian solvation module, version 2009. University of Minnesota, MinneapolisGoogle Scholar
  33. 33.
    Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 17(5):490–519CrossRefGoogle Scholar
  34. 34.
    PCModel, version 9.1 for Windows, 2006, Serena Software, Bloomington, 47402Google Scholar
  35. 35.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108(2):664–676CrossRefGoogle Scholar
  36. 36.
    Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges. Theor Chim Acta 93(5):281–301CrossRefGoogle Scholar
  37. 37.
    Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110(7):2493–2499CrossRefGoogle Scholar
  38. 38.
    Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2009) Solvent dependence of 14N nuclear magnetic resonance chemical shielding constants as a test of the accuracy of the computed polarization of solute electronic densities by the solvent. J Chem Theory Comput 5(9):2284–2300CrossRefGoogle Scholar
  39. 39.
    Katritzky AR, Øksne S, Boulton AJ (1962) The tautomerism of heteroaromatic compounds with five-membered rings—III: further isoxazol-5-ones. Tetrahedron 18(6):777–790CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations