Journal of Computer-Aided Molecular Design

, Volume 24, Issue 3, pp 225–235

Conformational landscape of platinum(II)-tetraamine complexes: DFT and NBO studies

  • Austin B. Yongye
  • Marc A. Giulianotti
  • Adel Nefzi
  • Richard A. Houghten
  • Karina Martínez-Mayorga
Article

Abstract

The potential energy surfaces of chiral tetraamine Pt(II) coordination complexes were computed at the B3LYP/LANL2DZ level of theory by a systematic variation of two dihedral angles: C12–C15–C34–C37 (θ) and C24–C17–C31–C48 (ψ) employing a grid resolution of 30°. Potential energy surfaces calculated using density functional theory methods and Boltzmann-derived populations revealed strong preference for one diasteromer of each series studied. In addition, natural bond orbital analysis show that the minima are stabilized predominantly by a combination of electronic interactions between two phenyl groups, the phenyl groups and the Pt2+ ion, as well as with the amine groups. Additional experimental characterization of the diasteroisomers studied here is in progress and will permit further molecular modeling studies with the appropriate stereochemistry.

Keywords

Conformational analysis Platinum(II)-tetraamine complexes Natural bond orbital Potential energy surface 

Supplementary material

10822_2010_9328_MOESM1_ESM.doc (903 kb)
Supplementary material 1 (DOC 903 kb)

References

  1. 1.
    Sun RW-Y, Ma D-L, Wong EL-M, Che C-M (2007) Dalton Trans 43:4884–4892Google Scholar
  2. 2.
    Inouye Y, Kanamori T, Sugiyama M, Yoshida T, Koike T, Shionoya M, Enomoto K, Suehiro K, Kimura E (1995) Antivir Chem Chemother 6:337–344Google Scholar
  3. 3.
    Singh RV, Joshi SC, Kulshrestha S, Nagpal P, Bansal A (2001) Metal Based Drugs 8:149–158CrossRefGoogle Scholar
  4. 4.
    Ming L-J, Epperson JD (2002) J Inorg Biochem 91:46–58CrossRefGoogle Scholar
  5. 5.
    Hollis LS, Amundsen AR, Stern EW (1989) J Med Chem 32:128–136CrossRefGoogle Scholar
  6. 6.
    Zheng H, Hu W, Yu D, Shen D-Y, Fu S, Kavanagh JJ, Wei I-C, Yang DJ (2008) Pharm Res 25:2272–2282CrossRefGoogle Scholar
  7. 7.
    Meggers E (2007) Curr Opin Chem Biol 11:287–292CrossRefGoogle Scholar
  8. 8.
    Orvig C, Abrams MJ (1999) Chem Rev 99:2201–2203CrossRefGoogle Scholar
  9. 9.
    Bregman H, Carroll PJ, Meggers E (2006) J Am Chem Soc 128:877–884CrossRefGoogle Scholar
  10. 10.
    Budzisz E, Malecka M, Lorenz I-P, Mayer P, Kwiecien RA, Paneth P, Krajewska U, Rozalski M (2006) Inorg Chem 45:9688–9695CrossRefGoogle Scholar
  11. 11.
    Lovejoy KS, Todd RC, Zhang S, McCormick MS, D’Aquino JA, Reardon JT, Sancar A, Giacomini KM, Lippard SJ (2008) Proc Natl Acad Sci USA 105:8902–8907CrossRefGoogle Scholar
  12. 12.
    Williams DS, Carroll PJ, Meggers E (2007) Inorg Chem 46:2944–2946CrossRefGoogle Scholar
  13. 13.
    Rosenberg B, Van Camp L, Krigas L (1965) Nature 205:698–699CrossRefGoogle Scholar
  14. 14.
    Rosenberg B (1985) Cancer 55:2303–2316CrossRefGoogle Scholar
  15. 15.
    Ludwig T, Riethmuller C, Gekle M, Schwerdt G, Oberleithner H (2004) Kidney Int 66:196–202CrossRefGoogle Scholar
  16. 16.
    Weiss RB, Christian MC (1993) Drugs 46:360–377CrossRefGoogle Scholar
  17. 17.
    Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, Lippard SJ, Giacomini KM (2006) Cancer Res 66:8847–8857CrossRefGoogle Scholar
  18. 18.
    Dooley CT, Chung NN, Wilkes BC, Schiller PW, Bidlack JM, Pasternak GW, Houghten RA (1994) Science 266:2019–2022CrossRefGoogle Scholar
  19. 19.
    Houghten RA, Pinilla C, Appel JR, Blondelle sE, Dooley CT, Eichler J, Nefzi A, Ostresh JM (1999) J Med Chem 42:3743–3778CrossRefGoogle Scholar
  20. 20.
    Pinilla C, Appel JR, Borras E, Houghten RA (2003) Nat Med 9:118–122CrossRefGoogle Scholar
  21. 21.
    Nefzi A, Hoesl CE, Pinilla C, Kauffman GB, Maggiora GM, Pasquale E, Houghten RA (2006) J Comb Chem 8:780–783CrossRefGoogle Scholar
  22. 22.
    Meggers E (2009) Chem Commun 1001–1010Google Scholar
  23. 23.
    Mora MA, Raya A, Mora-Ramirez MA (2002) Int J Quantum Chem 90:882–887CrossRefGoogle Scholar
  24. 24.
    Hasinoff BB, Wu X, Yang Y (2004) J Inorg Biochem 98:616–624CrossRefGoogle Scholar
  25. 25.
    Davies HO, Brown DA, Yanovsky AI, Nolan KB (1998) Inorg Chim Acta 268:313–316CrossRefGoogle Scholar
  26. 26.
    Messori L, Shaw J, Camalli M, Mura P, Marcon G (2003) Inorg Chem 42:6166–6168CrossRefGoogle Scholar
  27. 27.
    Granifo J, Vargas ME, Rocha H, Garland MT, Baggio R (2001) Inorg Chim Acta 321:209–214CrossRefGoogle Scholar
  28. 28.
    Rotondo A (2006) Acta Crystallogr Sect C: Cryst Struct Commun 62:m19–m21CrossRefGoogle Scholar
  29. 29.
    Hollis LS, Amundsen AR, Stern EW (1985) J Am Chem Soc 107:274–276CrossRefGoogle Scholar
  30. 30.
    Liljefors T, Pettersson I (2002) In: Krogsgaard-Larsen P, Liljefors T, Madsen U (eds) Textbook of drug design and discovery. Taylor & Francis, London, pp 86–116Google Scholar
  31. 31.
    Perola E, Charifson PS (2004) J Med Chem 47:2499–2510CrossRefGoogle Scholar
  32. 32.
    Butler KT, Luque FJ, Barril X (2009) J Comput Chem 30:601–610CrossRefGoogle Scholar
  33. 33.
    Yongye AB, Foley BL, Woods RJ (2008) J Phys Chem A 112:2634–2639CrossRefGoogle Scholar
  34. 34.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute, University of Wisconsin, Madison: NBO 5.0Google Scholar
  35. 35.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry. Plenum, New York, p 1Google Scholar
  36. 36.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  37. 37.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  38. 38.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda J, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui A, Baboul AG, Clifford S, Cioslowshi J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004)Google Scholar
  40. 40.
    Dennington II R, Keith T, Millam J (2007) Semichem Inc., Shawnee Mission, KSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Austin B. Yongye
    • 1
  • Marc A. Giulianotti
    • 1
  • Adel Nefzi
    • 1
  • Richard A. Houghten
    • 1
  • Karina Martínez-Mayorga
    • 1
  1. 1.Torrey Pines Institute for Molecular StudiesPort St. LucieUSA

Personalised recommendations