Journal of Computer-Aided Molecular Design

, Volume 24, Issue 1, pp 49–56

Artificial neural network study on organ-targeting peptides

  • Eunkyoung Jung
  • Junhyoung Kim
  • Seung-Hoon Choi
  • Minkyoung Kim
  • Hokyoung Rhee
  • Jae-Min Shin
  • Kihang Choi
  • Sang-Kee Kang
  • Nam Kyung Lee
  • Yun-Jaie Choi
  • Dong Hyun Jung
Article

Abstract

We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

Keywords

Neural network Organ-targeting peptide ROC score VHSE descriptor 

References

  1. 1.
    Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366CrossRefGoogle Scholar
  2. 2.
    Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102:430–437CrossRefGoogle Scholar
  3. 3.
    Trepel M, Arap W, Pasqualini R (2000) Exploring vascular heterogeneity for gene therapy targeting. Gene Ther 7:2059–2060CrossRefGoogle Scholar
  4. 4.
    Rajotte D, Ruoslahti E (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 274:11593–11598CrossRefGoogle Scholar
  5. 5.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727Google Scholar
  6. 6.
    Kolonin MG, Pasqualini R, Arap W (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 5:308–313CrossRefGoogle Scholar
  7. 7.
    Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380CrossRefGoogle Scholar
  8. 8.
    Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci USA 99:1527–1531CrossRefGoogle Scholar
  9. 9.
    Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992CrossRefGoogle Scholar
  10. 10.
    Oh P, Li Y, Yu J, Durr E, Krasinska K, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635CrossRefGoogle Scholar
  11. 11.
    Trepel M, Arap W, Pasqualini R (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 6:399–404CrossRefGoogle Scholar
  12. 12.
    Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardó-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127CrossRefGoogle Scholar
  13. 13.
    Jung E, Kim J, Kim M, Jung DH, Rhee H, Shin JM, Choi K, Kang SK, Kim MK, Yun CH, Choi YJ, Choi SH (2007) Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8:245CrossRefGoogle Scholar
  14. 14.
    Mei H, Lian ZH, Zhou Y, Li SZ (2005) A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers (Peptide Science) 80:775–786CrossRefGoogle Scholar
  15. 15.
    Hellberg S, Sjöström M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135CrossRefGoogle Scholar
  16. 16.
    Sandberg M, Eriksson L, Jonsson J, Sjöströ M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491CrossRefGoogle Scholar
  17. 17.
    The nnet of VR 7.2 package (2004) http://www.r-project.org/, Version R 2.0.1
  18. 18.
    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36Google Scholar
  19. 19.
    Springer C, Adalsteinsson H, Young MM, Kegelmeyer PW, Roe DC (2005) PostDock: a structural, empirical approach to scoring protein ligand complexes. J Med Chem 48:6821–6831CrossRefGoogle Scholar
  20. 20.
    Cramer RD, Bunce JD, Patterson DE, Frank IE (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 7:18–25CrossRefGoogle Scholar
  21. 21.
    Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038CrossRefGoogle Scholar
  22. 22.
    Chen Y, Xu X, Hong S, Chen J, Liu N, Underhill CB, Creswell K, Zhang L (2001) RGD-tachyplesin inhibits tumor growth. Cancer Res 61:2434–2438Google Scholar
  23. 23.
    Yoneda Y, Steiniger SC, Capková K, Mee JM, Liu Y, Kaufmann GF, Janda KD (2008) A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg Med Chem Lett 18:1632–1636CrossRefGoogle Scholar
  24. 24.
    Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A (2000) Enhancement of tumor necrosis factor α antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 18:1185–1190CrossRefGoogle Scholar
  25. 25.
    Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eunkyoung Jung
    • 1
  • Junhyoung Kim
    • 1
  • Seung-Hoon Choi
    • 1
  • Minkyoung Kim
    • 1
  • Hokyoung Rhee
    • 1
  • Jae-Min Shin
    • 2
  • Kihang Choi
    • 3
  • Sang-Kee Kang
    • 4
  • Nam Kyung Lee
    • 4
  • Yun-Jaie Choi
    • 4
  • Dong Hyun Jung
    • 1
  1. 1.Insilicotech Co. LtdSeongnam-ShiKorea
  2. 2.SBScience Co. LtdSeongnam-ShiKorea
  3. 3.Department of ChemistryKorea UniversitySeoulKorea
  4. 4.School of Agriculture BiotechnologySeoul National UniversitySeoulKorea

Personalised recommendations