Journal of Computer-Aided Molecular Design

, Volume 23, Issue 8, pp 593–602 | Cite as

Second-generation de novo design: a view from a medicinal chemist perspective

  • Andrea Zaliani
  • Krisztina Boda
  • Thomas Seidel
  • Achim Herwig
  • Christof H. Schwab
  • Johann Gasteiger
  • Holger Claußen
  • Christian Lemmen
  • Jörg Degen
  • Juri Pärn
  • Matthias Rarey
Article

Abstract

For computational de novo design, a general retrospective validation work is a very challenging task. Here we propose a comprehensive workflow to de novo design driven by the needs of computational and medicinal chemists and, at the same time, we propose a general validation scheme for this technique. The study was conducted combining a suite of already published programs developed within the framework of the NovoBench project, which involved three different pharmaceutical companies and four groups of developers. Based on 188 PDB protein–ligand complexes with diverse functions, the study involved the ligand reconstruction by means of a fragment-based de-novo design approach. The structure-based de novo search engine FlexNovo showed in five out of eight total cases the ability to reconstruct native ligands and to rank them in four cases out of five within the first five candidates. The generated structures were ranked according to their synthetic accessibilities evaluated by the program SYLVIA. This investigation showed that the final candidate molecules have about the same synthetic complexity as the respective reference ligands. Furthermore, the plausibility of being true actives was assessed through literature searches.

Keywords

Structure-based de novo design NovoBench Fragment space Validation study Synthetic accessibility Feature Trees FragView FlexNovo SYLVIA 

Supplementary material

References

  1. 1.
    Degen J, Rarey M (2006) Chem Med Chem 1:854Google Scholar
  2. 2.
    Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) J Med Chem 50:726CrossRefGoogle Scholar
  3. 3.
    Chen Y, Shoichet BK (2009) Nat Chem Biol. doi:10.1038/nchembio.155 Published Online 22-03-09Google Scholar
  4. 4.
    Teotico DG, Babaoglu K, Rocklin GJ, Ferreira RS, Giannetti AM, Shoichet BK (2009) Proc Natl Acad Sci 106:7455–7460CrossRefGoogle Scholar
  5. 5.
    Moon JB, Howe WJ (1990) Tetrahedron Comput Methodol 3:697CrossRefGoogle Scholar
  6. 6.
    Wang JW, Watson IA, Bell MA, Webster YW, Higgs RE, Vieth M (2007) 233rd ACS National Meeting, Chicago, USA, COMP-035Google Scholar
  7. 7.
    Rarey M, Stahl M (2001) J Comput Aided Mol Des 15:497CrossRefGoogle Scholar
  8. 8.
    Pärn J, Degen J, Rarey M (2007) J Comput Aided Mol Des 21:327CrossRefGoogle Scholar
  9. 9.
    Boda K, Seidel T, Gasteiger J (2006) J Comput Aided Mol Des 21:311CrossRefGoogle Scholar
  10. 10.
    The software package SYLVIA is available from Molecular Networks GmbH, Erlangen, Germany (http://www.molecular-networks.com)
  11. 11.
    Symyx technologies Inc., http://www.symyx.com/products/databases/bioactivity/mddr/index.jsp. Accessed May 2009
  12. 12.
    Sadowski J, Gasteiger J, Klebe G (1994) J Chem Inf Comput Sci 34:1000Google Scholar
  13. 13.
    The 3D structure generator CORINA is available from Molecular Networks GmbH, Erlangen, Germany (http://www.molecular-networks.com)
  14. 14.
    Maass P, Schulz-Gasch T, Stahl T, Rarey M (2007) J Chem Inf Model 47:390CrossRefGoogle Scholar
  15. 15.
    Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) Chem Med Chem 3:1503Google Scholar
  16. 16.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliv Rev 46:3CrossRefGoogle Scholar
  17. 17.
    Hindle SA, Rarey M, Buning C, Lengauer T (2002) J Comput Aided Mol Des 16:129CrossRefGoogle Scholar
  18. 18.
    Molecular Networks GmbH, http://www.molecular-networks.com/software/sylvia/index.html. Accessed May 2009
  19. 19.
    Hillisch A, Peters O, Kosemund D, Muller G, Walter A, Schneider B, Reddersen G, Elger W, Fritzemeier K-H (2004) Mol Endocrinol 18:1599CrossRefGoogle Scholar
  20. 20.
    Doweyko AM (2007) Drug Dev Res 68:95CrossRefGoogle Scholar
  21. 21.
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) J Med Chem 45:2615CrossRefGoogle Scholar
  22. 22.
    Baber JC, Feher M (2004) Mini Rev Med Chem 4:681–692Google Scholar
  23. 23.
    Allu TK, Oprea TI (2005) J Chem Inf Model 45:1237–1243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrea Zaliani
    • 1
    • 2
  • Krisztina Boda
    • 3
  • Thomas Seidel
    • 3
  • Achim Herwig
    • 3
  • Christof H. Schwab
    • 4
  • Johann Gasteiger
    • 3
    • 4
  • Holger Claußen
    • 5
  • Christian Lemmen
    • 5
  • Jörg Degen
    • 1
  • Juri Pärn
    • 1
  • Matthias Rarey
    • 1
  1. 1.Center for BioinformaticsUniversity of HamburgHamburgGermany
  2. 2.Nycomed GmbHConstanceGermany
  3. 3.Computer-Chemie-CentrumUniversity Erlangen-NürnbergErlangenGermany
  4. 4.Molecular Networks GmbHErlangenGermany
  5. 5.BioSolveIT GmbHSankt AugustinGermany

Personalised recommendations