Journal of Computer-Aided Molecular Design

, Volume 23, Issue 8, pp 459–473 | Cite as

The multiple roles of computational chemistry in fragment-based drug design

  • Richard Law
  • Oliver Barker
  • John J. Barker
  • Thomas Hesterkamp
  • Robert Godemann
  • Ole Andersen
  • Tara Fryatt
  • Steve Courtney
  • Dave Hallett
  • Mark Whittaker
Article

Abstract

Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.

Keywords

Fragment-based drug design Fragment-assisted-drug design Fragment library Lead optimization Computational chemistry HSP90 BCL-2 PDE10a BACE 

References

  1. 1.
    Agnelli G, Haas S, Ginsberg JS, Krueger KA, Dmitrienko A, Brandt JT (2007) A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. J Thromb Haemost 5(4):746–753. doi:10.1111/j.1538-7836.2007.02436.x CrossRefGoogle Scholar
  2. 2.
    Albert JS (2007) Editorial: fragment-based drug discovery. Curr Top Med Chem 7(6):1543. doi:10.2174/156802607782341127 CrossRefGoogle Scholar
  3. 3.
    Albert JS, Blomberg N, Breeze AL, Brown AJ, Burrows JN, Edwards PD, Folmer RH, Geschwindner S, Griffen EJ, Kenny PW et al (2007) An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca’s drug discovery programmes. Curr Top Med Chem 7(16):1600–1629. doi:10.2174/156802607782341091 CrossRefGoogle Scholar
  4. 4.
    Alex AA, Flocco MM (2007) Fragment-based drug discovery: what has it achieved so far? Curr Top Med Chem 7(16):1544–1567. doi:10.2174/156802607782341082 CrossRefGoogle Scholar
  5. 5.
    Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J et al (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci USA 106(1):262–267. doi:10.1073/pnas.0811325106 CrossRefGoogle Scholar
  6. 6.
    Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 2(12):720–723. doi:10.1038/nchembio831 CrossRefGoogle Scholar
  7. 7.
    Barker J, Courtney S, Hesterkamp T, Ullmann D, Whittaker M (2006) Fragment screening by biochemical assay. Expert Opin Drug Discov 1(3):225–236. doi:10.1517/17460441.1.3.225 CrossRefGoogle Scholar
  8. 8.
    Barker JJ, Barker O, Boggio R, Chauhan V, Cheng RKY, Corden V, Courtney SM, Edwards N, Falque VM, Fusar F, Gardiner M, Hamelin EMN, Hesterkamp T, Ichihara O, Jones RS, Mather O, Mercurio C, Minucci S, Montalbetti CAGN, Müller A, Patel D, Phillips BG, Varasi M, Whittaker M, Winkler D, Yarnold CJ (2009) Fragment-based Identification of Hsp90 Inhibitors. Chem Med Chem 4(6):963–966Google Scholar
  9. 9.
    Bartoli S, Fincham CI, Fattori D (2007) Fragment-based drug design: combining philosophy with technology. Curr Opin Drug Discov Devel 10(4):422–429Google Scholar
  10. 10.
    Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H et al (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44(6):2157–2166. doi:10.1021/ci049806z Google Scholar
  11. 11.
    Blaney J, Nienaber V, Burley SK (2006) Fragment based lead discovery optimization using X-ray crystallography, computational chemistry, and high throughput organic synthesis. Fragment-based approaches in drug discovery, vol 34. Wiley, Weinheim, pp 215–248Google Scholar
  12. 12.
    Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N et al (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43(14):2664–2674. doi:10.1021/jm000017s CrossRefGoogle Scholar
  13. 13.
    Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78. doi:10.1007/BF00124387 CrossRefGoogle Scholar
  14. 14.
    Brewer M, Ichihara O, Kirchoff C, Schade M, Whittaker M (2008) Assembling a fragment library. Fragment-based drug discovery; a practical approach. Wiley, Weinheim, pp 39–62Google Scholar
  15. 15.
    Brough PA, Aherne W, Barril X, Borgognoni J, Boxall K, Cansfield JE, Cheung KM, Collins I, Davies NG, Drysdale MJ et al (2008) 4, 5-Diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51(2):196–218. doi:10.1021/jm701018h CrossRefGoogle Scholar
  16. 16.
    Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng SC et al (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50(4):641–662. doi:10.1021/jm061152t CrossRefGoogle Scholar
  17. 17.
    Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10(14):987–992. doi:10.1016/S1359-6446(05)03511-7 CrossRefGoogle Scholar
  18. 18.
    Chandarlapaty S, Sawai A, Ye Q, Scott A, Silinski M, Huang K, Fadden P, Partdrige J, Hall S, Steed P et al (2008) SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res 14(1):240–248. doi:10.1158/1078-0432.CCR-07-1667 CrossRefGoogle Scholar
  19. 19.
    Chappie TA, Humphrey JM, Allen MP, Estep KG, Fox CB, Lebel LA, Liras S, Marr ES, Menniti FS, Pandit J et al (2007) Discovery of a series of 6, 7-dimethoxy-4-pyrrolidylquinazoline PDE10A inhibitors. J Med Chem 50(2):182–185. doi:10.1021/jm060653b CrossRefGoogle Scholar
  20. 20.
    Ciulli A, Abell C (2007) Fragment-based approaches to enzyme inhibition. Curr Opin Biotechnol 18(6):489–496. doi:10.1016/j.copbio.2007.09.003 CrossRefGoogle Scholar
  21. 21.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877. doi:10.1016/S1359-6446(03)02831-9 CrossRefGoogle Scholar
  22. 22.
    Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680. doi:10.1021/jm8000373 CrossRefGoogle Scholar
  23. 23.
    Crisman TJ, Bender A, Milik M, Jenkins JL, Scheiber J, Sukuru SC, Fejzo J, Hommel U, Davies JW, Glick M (2008) “Virtual fragment linking”: an approach to identify potent binders from low affinity fragment hits. J Med Chem 51(8):2481–2491. doi:10.1021/jm701314u CrossRefGoogle Scholar
  24. 24.
    Crisman TJ, Sisay MT, Bajorath J (2008) Ligand-target interaction-based weighting of substructures for virtual screening. J Chem Inf Model 48(10):1955–1964. doi:10.1021/ci800229q CrossRefGoogle Scholar
  25. 25.
    Dai Y, Hartandi K, Ji Z, Ahmed AA, Albert DH, Bauch JL, Bouska JJ, Bousquet PF, Cunha GA, Glaser KB et al (2007) Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N′-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. J Med Chem 50(7):1584–1597. doi:10.1021/jm061280h CrossRefGoogle Scholar
  26. 26.
    Das K, Lewi PJ, Hughes SH, Arnold E (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88(2):209–231. doi:10.1016/j.pbiomolbio.2004.07.001 CrossRefGoogle Scholar
  27. 27.
    Dymock B, Barril X, Beswick M, Collier A, Davies N, Drysdale M, Fink A, Fromont C, Hubbard RE, Massey A et al (2004) Adenine derived inhibitors of the molecular chaperone HSP90-SAR explained through multiple X-ray structures. Bioorg Med Chem Lett 14(2):325–328. doi:10.1016/j.bmcl.2003.11.011 CrossRefGoogle Scholar
  28. 28.
    Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19(3):199–221. doi:10.1002/prot.340190305 CrossRefGoogle Scholar
  29. 29.
    Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17(6):643–652. doi:10.1016/j.copbio.2006.10.007 CrossRefGoogle Scholar
  30. 30.
    Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay MurckoMA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6(10):755–769. doi:10.1016/S1074-5521(00)80022-8 CrossRefGoogle Scholar
  31. 31.
    Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed Engl 44(10):1504–1508. doi:10.1002/anie.200462457 CrossRefGoogle Scholar
  32. 32.
    Foloppe N, Hubbard R (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13(29):3583–3608. doi:10.2174/092986706779026165 CrossRefGoogle Scholar
  33. 33.
    Froning KJ, Felce JD, Jessen KA, Leonard S, Gutierrez A, Tang C, Huser N, Do T, Gessert S, Aubol B et al. (2007) SGX523: a potent and highly selective small molecule inhibitor of the MET receptor tyrosine kinase. http://www.sgxpharma.com/pipeline/documents/SGX523METAACR07.pdf
  34. 34.
    Geschwindner S, Olsson LL, Albert JS, Deinum J, Edwards PD, de Beer T, Folmer RH (2007) Discovery of a novel warhead against beta-secretase through fragment-based lead generation. J Med Chem 50(24):5903–5911. doi:10.1021/jm070825k CrossRefGoogle Scholar
  35. 35.
    Hajduk PJ (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525. doi:10.1021/jm049131r CrossRefGoogle Scholar
  36. 36.
    Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49(24):6972–6976. doi:10.1021/jm060511h CrossRefGoogle Scholar
  37. 37.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219. doi:10.1038/nrd2220 CrossRefGoogle Scholar
  38. 38.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864. doi:10.1021/ci000403i Google Scholar
  39. 39.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48(2):403–413. doi:10.1021/jm0495778 CrossRefGoogle Scholar
  40. 40.
    Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82. doi:10.1021/jm0603365 CrossRefGoogle Scholar
  41. 41.
    Helgadottir A, Manolescu A, Helgason A, Thorleifsson G, Thorsteinsdottir U, Gudbjartsson DF, Gretarsdottir S, Magnusson KP, Gudmundsson G, Hicks A et al (2006) A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 38(1):68–74. doi:10.1038/ng1692 CrossRefGoogle Scholar
  42. 42.
    Hesterkamp T, Whittaker M (2008) Fragment-based activity space: smaller is better. Curr Opin Chem Biol 12(3):260–268. doi:10.1016/j.cbpa.2008.02.005 CrossRefGoogle Scholar
  43. 43.
    Hesterkamp T, Barker J, Davenport A, Whittaker M (2007) Fragment based drug discovery using fluorescence correlation: spectroscopy techniques: challenges and solutions. Curr Top Med Chem 7(16):1582–1591. doi:10.2174/156802607782341064 CrossRefGoogle Scholar
  44. 44.
    Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5(7):585–595. doi:10.1038/nrd2083 CrossRefGoogle Scholar
  45. 45.
    Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7 CrossRefGoogle Scholar
  46. 46.
    Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL et al (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52(2):379–388. doi:10.1021/jm800984v CrossRefGoogle Scholar
  47. 47.
    Huang D, Caflisch A (2004) Efficient evaluation of binding free energy using continuum electrostatics solvation. J Med Chem 47(23):5791–5797. doi:10.1021/jm049726m CrossRefGoogle Scholar
  48. 48.
    Hubbard RE, Chen I, Davis B (2007) Informatics and modeling challenges in fragment-based drug discovery. Curr Opin Drug Discov Devel 10(3):289–297Google Scholar
  49. 49.
    Hubbard RE, Davis B, Chen I, Drysdale MJ (2007) The SeeDs approach: integrating fragments into drug discovery. Curr Top Med Chem 7(16):1568–1581. doi:10.2174/156802607782341109 CrossRefGoogle Scholar
  50. 50.
    Huth JR, Park C, Petros AM, Kunzer AR, Wendt MD, Wang X, Lynch CL, Mack JC, Swift KM, Judge RA et al (2007) Discovery and design of novel HSP90 inhibitors using multiple fragment-based design strategies. Chem Biol Drug Des 70(1):1–12. doi:10.1111/j.1747-0285.2007.00535.x CrossRefGoogle Scholar
  51. 51.
    Jahnke W, Erlanson DA (2007) Fragment-based approaches to lead discovery. Wiley, WeinheimGoogle Scholar
  52. 52.
    Janssen PA, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E et al (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2, 6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem 48(6):1901–1909. doi:10.1021/jm040840e CrossRefGoogle Scholar
  53. 53.
    Jhoti H (2007) Fragment-based drug discovery using rational design. Ernst Schering Found Symp Proc 3:169–185CrossRefGoogle Scholar
  54. 54.
    Jhoti H, Leach AR (2007) Structure-based drug discovery. Springer, DordrechtGoogle Scholar
  55. 55.
    Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11(5):485–493. doi:10.1016/j.cbpa.2007.07.010 CrossRefGoogle Scholar
  56. 56.
    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410. doi:10.1038/nature01913 CrossRefGoogle Scholar
  57. 57.
    Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96(18):9997–10002. doi:10.1073/pnas.96.18.9997 CrossRefGoogle Scholar
  58. 58.
    Leach AR, Hann MM, Burrows JN, Griffen EJ (2006) Fragment screening: an introduction. Mol Biosyst 2(9):430–446. doi:10.1039/b610069b CrossRefGoogle Scholar
  59. 59.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890. doi:10.1038/nrd2445 CrossRefGoogle Scholar
  60. 60.
    Lepre C (2007) Fragment-based drug discovery using the SHAPES method. Expert Opin Drug Discov 2(12):1555–1566. doi:10.1517/17460441.2.12.1555 CrossRefGoogle Scholar
  61. 61.
    Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38(3):511–522. doi:10.1021/ci970429i Google Scholar
  62. 62.
    Loukine E, Auer J, Bajorath J (2008) Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds. J Med Chem 51:5342–5348. doi:10.1021/jm800515r CrossRefGoogle Scholar
  63. 63.
    Makara GM (2007) On sampling of fragment space. J Med Chem 50(14):3214–3221. doi:10.1021/jm0700316 CrossRefGoogle Scholar
  64. 64.
    Mashhoon N, DeMaggio AJ, Tereshko V, Bergmeier SC, Egli M, Hoekstra MF, Kuret J (2000) Crystal structure of a conformation-selective casein kinase-1 inhibitor. J Biol Chem 275(26):20052–20060. doi:10.1074/jbc.M001713200 CrossRefGoogle Scholar
  65. 65.
    Moore WR Jr (2005) Maximizing discovery efficiency with a computationally driven fragment approach. Curr Opin Drug Discov Devel 8(3):355–364Google Scholar
  66. 66.
    Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to beta-secretase. J Med Chem 50(6):1116–1123. doi:10.1021/jm0611962 CrossRefGoogle Scholar
  67. 67.
    Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7(16):1630–1642. doi:10.2174/156802607782341073 CrossRefGoogle Scholar
  68. 68.
    O’Hare T, Eide CA, Tyner JW, Corbin AS, Wong MJ, Buchanan S, Holme K, Jessen KA, Tang C, Lewis HA et al (2008) SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc Natl Acad Sci USA 105(14):5507–5512. doi:10.1073/pnas.0800587105 CrossRefGoogle Scholar
  69. 69.
    Oslob JD, Romanowski MJ, Allen DA, Baskaran S, Bui M, Elling RA, Flanagan WM, Fung AD, Hanan EJ, Harris S et al (2008) Discovery of a potent and selective aurora kinase inhibitor. Bioorg Med Chem Lett 18(17):4880–4884. doi:10.1016/j.bmcl.2008.07.073 CrossRefGoogle Scholar
  70. 70.
    Park CM, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, Marsh KC, Nimmer P, Shoemaker AR, Song X et al (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915. doi:10.1021/jm800669s CrossRefGoogle Scholar
  71. 71.
    Reynolds CH, Tounge BA, Bembenek SD (2008) Ligand binding efficiency: trends, physical basis, and implications. J Med Chem 51(8):2432–2438. doi:10.1021/jm701255b CrossRefGoogle Scholar
  72. 72.
    Rush TS 3rd, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48(5):1489–1495. doi:10.1021/jm040163o CrossRefGoogle Scholar
  73. 73.
    Sala E, Mologni L, Truffa S, Gaetano C, Bollag GE, Gambacorti-Passerini C (2008) BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res 6(5):751–759. doi:10.1158/1541-7786.MCR-07-2001 CrossRefGoogle Scholar
  74. 74.
    Schneider G (2002) Trends in virtual combinatorial library design. Curr Med Chem 9(23):2095–2101Google Scholar
  75. 75.
    Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663. doi:10.1038/nrd1799 CrossRefGoogle Scholar
  76. 76.
    Schuffenhauer A, Ruedisser S, Marzinzik AL, Jahnke W, Blommers M, Selzer P, Jacoby E (2005) Library design for fragment based screening. Curr Top Med Chem 5(8):751–762. doi:10.2174/1568026054637700 CrossRefGoogle Scholar
  77. 77.
    Siegal G, Ab E, Schultz J (2007) Integration of fragment screening and library design. Drug Discov Today 12(23–24):1032–1039. doi:10.1016/j.drudis.2007.08.005 CrossRefGoogle Scholar
  78. 78.
    Siegel MG, Vieth M (2007) Drugs in other drugs: a new look at drugs as fragments. Drug Discov Today 12(1–2):71–79. doi:10.1016/j.drudis.2006.11.011 CrossRefGoogle Scholar
  79. 79.
    Snarey M, Terrett NK, Willett P, Wilton DJ (1997) Comparison of algorithms for dissimilarity-based compound selection. J Mol Graph Model 15(6):372–385. doi:10.1016/S1093-3263(98)00008-4 CrossRefGoogle Scholar
  80. 80.
    Sykora VJ, Leahy DE (2008) Chemical descriptors library (CDL): a generic, open source software library for chemical informatics. J Chem Inf Model 48(10):1931–1942. doi:10.1021/ci800135h CrossRefGoogle Scholar
  81. 81.
    Taldone T, Sun W, Chiosis G (2008) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med ChemGoogle Scholar
  82. 82.
    Taylor JD, Gilbert PJ, Williams MA, Pitt WR, Ladbury JE (2007) Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Proteins 67(4):981–990. doi:10.1002/prot.21369 CrossRefGoogle Scholar
  83. 83.
    Verlinde CL, Rudenko G, Hol WG (1992) In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des 6(2):131–147. doi:10.1007/BF00129424 CrossRefGoogle Scholar
  84. 84.
    Villar HO, Hansen MR (2007) Computational techniques in fragment based drug discovery. Curr Top Med Chem 7(15):1509–1513. doi:10.2174/156802607782194725 CrossRefGoogle Scholar
  85. 85.
    Wada CK, Holms JH, Curtin ML, Dai Y, Florjancic AS, Garland RB, Guo Y, Heyman HR, Stacey JR, Steinman DH et al (2002) Phenoxyphenyl sulfone N-formylhydroxylamines (retrohydroxamates) as potent, selective, orally bioavailable matrix metalloproteinase inhibitors. J Med Chem 45(1):219–232. doi:10.1021/jm0103920 CrossRefGoogle Scholar
  86. 86.
    Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci USA 104(14):5782–5787. doi:10.1073/pnas.0700279104 CrossRefGoogle Scholar
  87. 87.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n CrossRefGoogle Scholar
  88. 88.
    Wyatt PG, Woodhead AJ, Berdini V, Boulstridge JA, Carr MG, Cross DM, Davis DJ, Devine LA, Early TR, Feltell RE et al (2008) Identification of N-(4-piperidinyl)-4-(2, 6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 51(16):4986–4999. doi:10.1021/jm800382h CrossRefGoogle Scholar
  89. 89.
    Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13(6):1625–1629. doi:10.1158/1078-0432.CCR-06-2966 CrossRefGoogle Scholar
  90. 90.
    Zartler ER, Mo H (2007) Practical aspects of NMR-based fragment discovery. Curr Top Med Chem 7(16):1592–1599. doi:10.2174/156802607782341055 CrossRefGoogle Scholar
  91. 91.
    Zartler ER, Shapiro MJ (2008) Fragment-based drug discovery: a practical approach. Wiley, ChichesterCrossRefGoogle Scholar
  92. 92.
    Zhou JZ (2008) Structure-directed combinatorial library design. Curr Opin Chem Biol 12(3):379–385. doi:10.1016/j.cbpa.2008.02.007 CrossRefGoogle Scholar
  93. 93.
    Ziegler DS, Kung AL (2008) Therapeutic targeting of apoptosis pathways in cancer. Curr Opin Oncol 20(1):97–103. doi:10.1097/CCO.0b013e3282f310f6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Richard Law
    • 1
  • Oliver Barker
    • 1
  • John J. Barker
    • 1
  • Thomas Hesterkamp
    • 1
  • Robert Godemann
    • 1
  • Ole Andersen
    • 1
  • Tara Fryatt
    • 1
  • Steve Courtney
    • 1
  • Dave Hallett
    • 1
  • Mark Whittaker
    • 1
  1. 1.Evotec (UK) LtdOxfordshireUK

Personalised recommendations