Advertisement

Journal of Computer-Aided Molecular Design

, Volume 23, Issue 7, pp 395–409 | Cite as

How accurate are continuum solvation models for drug-like molecules?

  • Jacob Kongsted
  • Pär Söderhjelm
  • Ulf RydeEmail author
Original Paper

Abstract

We have estimated the hydration free energy for 20 neutral drug-like molecules, as well as for three series of 6–11 inhibitors to avidin, factor Xa, and galectin-3 with four different continuum solvent approaches (the polarised continuum method the Langevin dipole method, the finite-difference solution of the Poisson equation, and the generalised Born method), and several variants of each, giving in total 24 different methods. All four types of methods have been thoroughly calibrated for a number of experimentally known small organic molecules with a mean absolute deviation (MAD) of 1–6 kJ/mol for neutral molecules and 4–30 kJ/mol for ions. However, for the drug-like molecules, the accuracy seems to be appreciably worse. The reason for this is that drug-like molecules are more polar than small organic molecules and that the uncertainty of the methods is proportional to the size of the solvation energy. Therefore, the accuracy of continuum solvation methods should be discussed in relative, rather than absolute, terms. In fact, the mean unsigned relative deviations of the best solvation methods, 0.09 for neutral and 0.05 for ionic molecules, correspond to 2–20 kJ/mol absolute error for the drug-like molecules in this investigation, or 2–3,000 in terms of binding constants. Fortunately, the accuracy of all methods can be improved if only relative energies within a series of inhibitors are considered, especially if all of them have the same net charge. Then, all except two methods give MADs of 2–5 kJ/mol (corresponding to an uncertainty of a factor of 2–7 in the binding constant). Interestingly, the generalised Born methods typically give better results than the Poison–Boltzmann methods.

Keywords

Solvation energy Free energy of hydration Continuum methods PCM Langevin dipoles FDPB Generalised Born 

Notes

Acknowledgments

This investigation has been supported by grants from the Swedish research council and by computer resources of Lunarc at Lund University. J. K. thanks the Villum Kann Rasmussen foundation for financial support. We thank Drs. J. Stålring, P. Rydberg, and L. Olsen for help with the selection and set-up of drug-like molecules.

Supplementary material

10822_2009_9271_MOESM1_ESM.pdf (629 kb)
(PDF 628 kb)

References

  1. 1.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200CrossRefGoogle Scholar
  2. 2.
    Orozco M, Luque FJ (2000) Chem Rev 100:4187–4225CrossRefGoogle Scholar
  3. 3.
    Simonson T (2001) Curr Opin Struct Biol 11:243–252CrossRefGoogle Scholar
  4. 4.
    Feig M, Brooks CL (2004) Curr Opin Struct Biol 14:217–224CrossRefGoogle Scholar
  5. 5.
    Born M (1920) Zeitsch Physi 1:45CrossRefGoogle Scholar
  6. 6.
    Onsager LJ (1936) Am Chem Soc 58:1486CrossRefGoogle Scholar
  7. 7.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117CrossRefGoogle Scholar
  8. 8.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  9. 9.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  10. 10.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  11. 11.
    Tomasi J, Mennucci B, Cances E (1999) J Mol Struct (Theochem) 464:211CrossRefGoogle Scholar
  12. 12.
    Chipman DM (2000) J Chem Phys 112:5558CrossRefGoogle Scholar
  13. 13.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  14. 14.
    Vreven T, Mennucci B, da Silva MO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62–72CrossRefGoogle Scholar
  15. 15.
    Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) J Comput Chem 27:976–985CrossRefGoogle Scholar
  16. 16.
    Warwicker J, Watson HC (1982) J Mol Biol 157:671CrossRefGoogle Scholar
  17. 17.
    Gilson MK, Honig B (1988) Prot Struct Funct Genet 3:32–52CrossRefGoogle Scholar
  18. 18.
    Sharp KA, Honig B (1990) Annu Rev Biophys Biophys Chem 19:310CrossRefGoogle Scholar
  19. 19.
    Sharp KA, Honig B (1995) Curr Opin Struct Biol 5:323CrossRefGoogle Scholar
  20. 20.
    Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988CrossRefGoogle Scholar
  21. 21.
    Simonsson T, Brünger AT (1994) J Phys Chem 98:4683CrossRefGoogle Scholar
  22. 22.
    Baker NA (2004) Methods Enzymol 383:94CrossRefGoogle Scholar
  23. 23.
    Chen Y, Noodleman L, Case DA, Bashford D (1994) J Phys Chem 98:11875Google Scholar
  24. 24.
    Baldridge K, Fine R, Hager A (1994) J Comput Chem 15:1217CrossRefGoogle Scholar
  25. 25.
    Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116:11875CrossRefGoogle Scholar
  26. 26.
    Gorgonea V, Merz KM (1999) J Phys Chem A 103:5171–5188CrossRefGoogle Scholar
  27. 27.
    Schnieders MJ, Baker NA, Ren P, Ponder JW (2007) J Chem Phys 126:124114CrossRefGoogle Scholar
  28. 28.
    Hoitjink GJ, de Boer E, Van der Meij PH, Weijland EP (1956) Recl Trav Pays-Bas 75:487Google Scholar
  29. 29.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127CrossRefGoogle Scholar
  30. 30.
    Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104:3712–3720CrossRefGoogle Scholar
  31. 31.
    Bashford D, Case DA (2000) Annu Rev Phys Chem 51:129–152CrossRefGoogle Scholar
  32. 32.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CI (2004) J Comput Chem 25:265–284CrossRefGoogle Scholar
  33. 33.
    Schnieders MJ, Ponder JW (2007) J Chem Theory Comput 2007(3):2083–2097CrossRefGoogle Scholar
  34. 34.
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 1995(246):122–129CrossRefGoogle Scholar
  35. 35.
    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152CrossRefGoogle Scholar
  36. 36.
    Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2033CrossRefGoogle Scholar
  37. 37.
    Warshel A (1979) J Phys Chem 83:1640CrossRefGoogle Scholar
  38. 38.
    Florián J, Warshel A (1997) J Phys Chem B 101:5583CrossRefGoogle Scholar
  39. 39.
    Florián J, Warshel A (1999) J Phys Chem B 103:10282–10288CrossRefGoogle Scholar
  40. 40.
    Hermida-Ramón JM, Karlström G, Lindh R (2002) J Phys Chem B 106:7115–7120CrossRefGoogle Scholar
  41. 41.
    Langevin P (1905) Annales de Chemie Physique 8:70Google Scholar
  42. 42.
    Sandberg L, Casemyr R, Edholm O (2002) J Phys Chem 106:7889–7897Google Scholar
  43. 43.
    Hermann RB (1972) J Phys Chem 76:2754–2759CrossRefGoogle Scholar
  44. 44.
    Cossi M, Tomasi J, Cammi R (1995) Int Quantum Chem Quant Chem Symp 29:695CrossRefGoogle Scholar
  45. 45.
    Floris FM, Tomasi JJ (1989) Comput Chem 10:616CrossRefGoogle Scholar
  46. 46.
    Cossi M, Mennucci B, Cammi RJ (1996) Comput Chem 17:57CrossRefGoogle Scholar
  47. 47.
    Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2:128–139CrossRefGoogle Scholar
  48. 48.
    Tan C, Tan Y-H, Luo R (2007) J Phys Chem B 111:12263–12274CrossRefGoogle Scholar
  49. 49.
    Maple JR, Cao Y, Damm W, Halgren TA, Kaminski GA, Zhang LY, Friesner RA (2005) J Chem Theory Comput 1:694–715CrossRefGoogle Scholar
  50. 50.
    Wagoner JA, Baker NA (2006) Proc Natl Acad Sci USA 103:8331–8336CrossRefGoogle Scholar
  51. 51.
    Gallicchio E, Zhang LY, Levy RM (2002) J Comp Chem 23:517–529CrossRefGoogle Scholar
  52. 52.
    Gallicchio E, Levy RM (2004) J Comp Chem 25:479–499CrossRefGoogle Scholar
  53. 53.
    Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098CrossRefGoogle Scholar
  54. 54.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221CrossRefGoogle Scholar
  55. 55.
    Tan C, Yang L, Luo R (2006) J Phys Chem B 110:18686–18687Google Scholar
  56. 56.
    Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) Acc Chem Res, in press. doi:  10.1021/ar800187p
  57. 57.
    Shirts MR, Pitera JW, Swope WC, Pande VS (2003) J Chem Phys 119:5740–5761CrossRefGoogle Scholar
  58. 58.
    Li J, Zhu T, Hawkins GD, Winge P, Liotard DA, Cramer CJ, Truhlar DG (1999) Theor Chim Acta 103:9–63Google Scholar
  59. 59.
    Thompson JD, Cramer CJ, Truhlar DG (2004) 108:6532–6542Google Scholar
  60. 60.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33(12):889–897CrossRefGoogle Scholar
  61. 61.
    Vorobjev YN, Hermans J (1999) Biophys Chem 78:195–205CrossRefGoogle Scholar
  62. 62.
    Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Biochemistry 20:849–855CrossRefGoogle Scholar
  63. 63.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081CrossRefGoogle Scholar
  64. 64.
    Alagona G, Ghio C, Nagy PI (2004) Int J Quant Chem 99:161–178CrossRefGoogle Scholar
  65. 65.
    Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77CrossRefGoogle Scholar
  66. 66.
    Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791CrossRefGoogle Scholar
  67. 67.
    Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, Ryde U (2006) J Med Chem 49:6596–6606CrossRefGoogle Scholar
  68. 68.
    Kongsted J; Ryde U (2009) J Comput Aided Mol Des 23:63–71Google Scholar
  69. 69.
    Matter H, Defossa E, Heinelt U, Blohm P-M, Schneider D, Müller A, Herok S, Schreuder H, Liesum A, Brachvogel V, Lönze P, Walser A, Al-Obeidi F, Wildgoose P (2002) J Med Chem 45:2749–2769CrossRefGoogle Scholar
  70. 70.
    Sörme P, Arnoux P, Kahl-Knutsson B, Leffler H, Rini JM, Nilsson UJ (2005) J Am Chem Soc 127:1737–1743CrossRefGoogle Scholar
  71. 71.
    Mobley DL, Chodera JD, Dill KA (2008) J Phys Chem B 112:938–946CrossRefGoogle Scholar
  72. 72.
    Pugliese L, Coda A, Malcovati M, Bolognesi M (1993) J Mol Biol 231:698–710CrossRefGoogle Scholar
  73. 73.
    Perola E, Charifson PS (2004) J Med Chem 47:2499–2510CrossRefGoogle Scholar
  74. 74.
    PC Spartan (2001) Pro 1.0.6, Wavefunction, Inc. 18401 Von Karman Avenue, Irvine, CA 92612Google Scholar
  75. 75.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  76. 76.
    Mennucci B, Tomasi JJ (1997) Chem Phys 106:5151Google Scholar
  77. 77.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 (Revision A.9). Gaussian Inc, PittsburghGoogle Scholar
  78. 78.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc, WallingfordGoogle Scholar
  79. 79.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  80. 80.
    Besler BH, Merz KM, Kollman PA (1990) Atomic Charges Derived from semiempirical Methods. J Comput Chem 11:431–439CrossRefGoogle Scholar
  81. 81.
    Case DA, Darden TA, Cheatham TEIII, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San FranciscoGoogle Scholar
  82. 82.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1975) J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  83. 83.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012CrossRefGoogle Scholar
  84. 84.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  85. 85.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) J Comput Chem 25:265–284CrossRefGoogle Scholar
  86. 86.
    Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105:6507–6514CrossRefGoogle Scholar
  87. 87.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041CrossRefGoogle Scholar
  88. 88.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824–19839CrossRefGoogle Scholar
  89. 89.
    Tsui V, Case DA (2001) Biopol 56:275–291CrossRefGoogle Scholar
  90. 90.
    Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394CrossRefGoogle Scholar
  91. 91.
    Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) J Chem Theory Comput 3:156–169CrossRefGoogle Scholar
  92. 92.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  93. 93.
    Ghosh A, Rapp CS, Friesner RA (1998) J Phys Chem B 102:10983CrossRefGoogle Scholar
  94. 94.
    Curutchet C, Orozco M, Luque FJ, Mennucci B, Tomasi J (2006) J Comput Chem 27:1769–1780CrossRefGoogle Scholar
  95. 95.
    Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644–2676CrossRefGoogle Scholar
  96. 96.
    Raha K, Merz KM (2005) J Med Chem 48:4558–4575CrossRefGoogle Scholar
  97. 97.
    Gohlke H, Case DA (2004) J Comput Chem 28:238–250CrossRefGoogle Scholar
  98. 98.
    Jensen JH, Li H, Robertson AD, Molina PA (2002) J Phys Chem B 106:3486–3496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Physics and ChemistryUniversity of Southern DenmarkOdense MDenmark
  2. 2.Department of Theoretical ChemistryLund UniversityLundSweden

Personalised recommendations