Journal of Computer-Aided Molecular Design

, Volume 23, Issue 9, pp 621–632

Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT

  • Alexander S. Bayden
  • Micaela Fornabaio
  • J. Neel  Scarsdale
  • Glen E. Kellogg
Article

Abstract

A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol−1 in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol−1. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol−1.

Keywords

Crystallography Computational titration Web application Gibbs free energy Protonation Proteins HINT 

References

  1. 1.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235CrossRefGoogle Scholar
  2. 2.
    Weichenberger CX, Sippl MJ (2006) Bioinformatics 22:1397CrossRefGoogle Scholar
  3. 3.
    Weichenberger CX, Sippl MJ (2006) Structure 14:967CrossRefGoogle Scholar
  4. 4.
    Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285:1735CrossRefGoogle Scholar
  5. 5.
    Hooft RW, Sander C, Vriend G (1996) Proteins 26:363CrossRefGoogle Scholar
  6. 6.
    McDonald IK, Thornton JM (1995) Protein Eng 8:217CrossRefGoogle Scholar
  7. 7.
    Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A (2004) Curr Med Chem 11:3093Google Scholar
  8. 8.
    Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644CrossRefGoogle Scholar
  9. 9.
    Lazaridis T (2002) Curr Org Chem 6:1319CrossRefGoogle Scholar
  10. 10.
    Wang W, Donini O, Reyes CM, Kollman PA (2001) Annu Rev Biophys Biomol Struct 30:211CrossRefGoogle Scholar
  11. 11.
    Ajay, Murcko MA (1995) J Med Chem 38:4953CrossRefGoogle Scholar
  12. 12.
    Böhm H-J (1994) J Comput-Aided Mol Des 8:243CrossRefGoogle Scholar
  13. 13.
    Böhm H-J (1998) J Comput-Aided Mol Des 12:309CrossRefGoogle Scholar
  14. 14.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425CrossRefGoogle Scholar
  15. 15.
    Brady GP, Sharp KA (1997) Curr Opin Struct Biol 7:215CrossRefGoogle Scholar
  16. 16.
    Ben-Naim A (1997) J Chem Phys 107:3698CrossRefGoogle Scholar
  17. 17.
    Dill KA (1997) J Biol Chem 272:701Google Scholar
  18. 18.
    Chou JJ, Li S, Klee CB, Bax A (2001) Nat Struct Biol 8:990CrossRefGoogle Scholar
  19. 19.
    Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337CrossRefGoogle Scholar
  20. 20.
    Reddy MR, Erion MD, Agarwal A (2000) Rev Comput Chem 16:217CrossRefGoogle Scholar
  21. 21.
    Kollman PA (1993) Chem Rev 93:2395CrossRefGoogle Scholar
  22. 22.
    Åqvist J, Luzhkov VB, Brandsal BO (2002) Acc Chem Res 35:358CrossRefGoogle Scholar
  23. 23.
    Jorgensen WL (1989) Acc Chem Res 22:184CrossRefGoogle Scholar
  24. 24.
    Reddy MR, Erion MD, Agarwal A (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 16. Wiley-VCH, New York, pp 217–304CrossRefGoogle Scholar
  25. 25.
    Weichenberger CX, Sippl MJ (2007) Nucl Acids Res 35:W403CrossRefGoogle Scholar
  26. 26.
    Davis IW, Murray LW, Richardson JS, Richardson DC (2004) Nucl Acids Res 32:W615CrossRefGoogle Scholar
  27. 27.
    Hooft RW, Vriend G, Sander C, Abola EE (1996) Nature 381:272Google Scholar
  28. 28.
    Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA (1998) Proc Natl Acad Sci USA 95:12088CrossRefGoogle Scholar
  29. 29.
    Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442CrossRefGoogle Scholar
  30. 30.
    Gao J, Xia X (1992) Science 258:631CrossRefGoogle Scholar
  31. 31.
    Kuhn B, Kollman PA, Stahl M (2004) J Comput Chem 25:1865CrossRefGoogle Scholar
  32. 32.
    Simonson T, Carlsson J, Case DA (2004) J Am Chem Soc 126:4167CrossRefGoogle Scholar
  33. 33.
    Mongan J, Case DA, McCammon JA (2004) J Comput Chem 25:2038CrossRefGoogle Scholar
  34. 34.
    Nicholls A, Honig B (1991) J Comput Chem 12:435CrossRefGoogle Scholar
  35. 35.
    Voges D, Karshikoff A (1998) J Chem Phys 108:2219CrossRefGoogle Scholar
  36. 36.
    Krishtalik LI, Kuznetsov AM, Mertz EL (1997) Proteins: Struct Funct Genet 28:174CrossRefGoogle Scholar
  37. 37.
    Demchuk E, Wade RC (1996) J Phys Chem 100:17373CrossRefGoogle Scholar
  38. 38.
    Antosiewicz J, McCammon JA, Gilson MK (1994) J Mol Biol 238:415CrossRefGoogle Scholar
  39. 39.
    Yang A-S, Gunner MR, Sampogna R, Sharp K, Honig B (1993) Proteins: Struct Funct Genet 15:252CrossRefGoogle Scholar
  40. 40.
    Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Proc Natl Acad Sci USA 88:5804CrossRefGoogle Scholar
  41. 41.
    Bashford D, Karplus M (1990) Biochemistry 29:10219CrossRefGoogle Scholar
  42. 42.
    Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731CrossRefGoogle Scholar
  43. 43.
    Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) J Mol Biol 324:105CrossRefGoogle Scholar
  44. 44.
    Koumanov A, Ruterjans H, Karshikoff A (2002) Proteins: Struct Funct Genet 46:85CrossRefGoogle Scholar
  45. 45.
    Van Vlijmen HWT, Schaefer M, Karplus M (1998) Proteins: Struct Funct Genet 33:145CrossRefGoogle Scholar
  46. 46.
    Nielsen JE, Vriend G (2001) Proteins: Struct Funct Genet 43:403CrossRefGoogle Scholar
  47. 47.
    Mehler EL, Guarnieri F (1999) Biophys J 77:3CrossRefGoogle Scholar
  48. 48.
    Hansch C, Leo AJ (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New YorkGoogle Scholar
  49. 49.
    Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A (2002) J Med Chem 45:2469CrossRefGoogle Scholar
  50. 50.
    Burnett JC, Botti P, Abraham DJ, Kellogg GE (2001) Proteins: Struct Funct Genet 42:355CrossRefGoogle Scholar
  51. 51.
    Burnett JC, Kellogg GE, Abraham DJ (2000) Biochemistry 39:1622CrossRefGoogle Scholar
  52. 52.
    Abraham DJ, Kellogg GE, Holt JM, Ackers GK (1997) J Mol Biol 272:613CrossRefGoogle Scholar
  53. 53.
    Cashman DJ, Kellogg GE (2004) J Med Chem 47:1360CrossRefGoogle Scholar
  54. 54.
    Cashman DJ, Scarsdale JN, Kellogg GE (2003) Nuc Acid Res 31:4410CrossRefGoogle Scholar
  55. 55.
    Kellogg GE, Scarsdale JN, Cashman DJ (1999) Med Chem Res 9:592Google Scholar
  56. 56.
    Kellogg GE, Scarsdale JN, Fornari FA (1998) Nuc Acid Res 26:4721CrossRefGoogle Scholar
  57. 57.
    Spyrakis F, Cozzini P, Bertoli C, Marabotti A, Kellogg GE, Mozzarelli A (2007) BMC Struct Biol 7:4CrossRefGoogle Scholar
  58. 58.
    Marabotti A, Spyrakis F, Facchiano A, Cozzini P, Alberti S, Kellogg GE, Mozzarelli A (2008) J Comput Chem 29:1955CrossRefGoogle Scholar
  59. 59.
    Yakovlev VA, Barani IJ, Rabender CS, Black SM, Leach JK, Graves PR, Kellogg GE, Mikkelsen RB (2007) Biochemistry 46:11671CrossRefGoogle Scholar
  60. 60.
    Kellogg GE, Fornabaio M, Chen DL, Abraham DJ, Spyrakis F, Cozzini P, Mozzarelli A (2006) J Mol Graph. Model 24:434Google Scholar
  61. 61.
    Kellogg GE, Chen DL (2004) Chem Biodiver 1:98CrossRefGoogle Scholar
  62. 62.
    Tripathi A, Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Kellogg GE (2007) Chem Biodiver 4:2564CrossRefGoogle Scholar
  63. 63.
    Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE (2003) J Med Chem 46:4487CrossRefGoogle Scholar
  64. 64.
    Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) J Comput Aid Mol Des 19:453CrossRefGoogle Scholar
  65. 65.
  66. 66.
    Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucl Acid Res 33:W368CrossRefGoogle Scholar
  67. 67.
    Kantardjiev AA, Atanasov BP (2006) Nucl Acid Res 34:W43CrossRefGoogle Scholar
  68. 68.
    Spyrakis F, Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE (2004) J Am Chem Soc 126:11764CrossRefGoogle Scholar
  69. 69.
    Navia MA, Fitzgerald PMD, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Nature 337:615CrossRefGoogle Scholar
  70. 70.
    Sybyl, version 7.3 (2006) Tripos Associates Inc., 1699 S Hanley Rd., St. Louis, MO 631444, USAGoogle Scholar
  71. 71.
    http://www.edusoft-lc.com/hint (Accessed May 2008)
  72. 72.
    Kellogg GE, Fornabaio M, Chen DL, Abraham JD (2005) Internet Electr J Mol Design 4:194Google Scholar
  73. 73.
    http://www.python.org (Accessed May 2008)
  74. 74.
    http://www.gnuplot.info (Accessed May 2008)
  75. 75.
    Amadasi A, Surface JA, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE (2008) J Med Chem 51:1063CrossRefGoogle Scholar
  76. 76.
    Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) J Med Chem 50:5912CrossRefGoogle Scholar
  77. 77.
    Chavas LMG, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, Monti E, Wakatsuki S (2005) J Biol Chem 280:469Google Scholar
  78. 78.
    Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P (2007) Eur J Med Chem 42:921CrossRefGoogle Scholar
  79. 79.
    Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Abraham DJ, Kellogg GE (2004) J Med Chem 47:4507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexander S. Bayden
    • 1
  • Micaela Fornabaio
    • 1
  • J. Neel  Scarsdale
    • 2
  • Glen E. Kellogg
    • 1
  1. 1.Department of Medicinal Chemistry & Institute for Structural Biology and Drug DiscoveryVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Biochemistry and Molecular Biology & Institute for Structural Biology and Drug DiscoveryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations