Advertisement

Journal of Computer-Aided Molecular Design

, Volume 23, Issue 8, pp 513–525 | Cite as

Design of compound libraries for fragment screening

  • Niklas Blomberg
  • David A. Cosgrove
  • Peter W. Kenny
  • Karin Kolmodin
Article

Abstract

Approaches to the design of libraries for fragment screening are illustrated with reference to a 20 k generic fragment screening library and a 1.2 k generic NMR screening library. Tools and methods for library design that have been developed within AstraZeneca are described, including Foyfi fingerprints and the Flush program for neighborhood characterization. It will be shown how Flush and the BigPicker, which selects maximally diverse sets of compounds, are used to apply the Core and Layer method for library design. Approaches to partitioning libraries into cocktails are also described.

Keywords

Fragment based Fragment based drug discovery Fragment based lead generation Fragment screening FBDD FBLG NMR screening Screening library Library design Molecular complexity Molecular similarity Neighborhood Fingerprint Foyfi Flush Bigpicker Filter Leatherface SMARTS Solubility 

Notes

Acknowledgments

It is a pleasure to acknowledge helpful and insightful discussions with Alex Breeze, Gill Burgess, Jeremy Burrows, Richard Button, Kevin Embrey, Rutger Folmer, Andrew Grant, James Haigh, Neil Hales, Jeff Morris, Paul Owen, Jens Petersen, Adam Shapiro, Ellen Simkiss, Steve St-Gallay, Dave Timms and Richard Ward.

References

  1. 1.
    Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) J Med Chem 51:3661–3680. doi: 10.1021/jm8000373 CrossRefGoogle Scholar
  2. 2.
    Hesterkamp T, Whittaker M (2008) Curr Opin Chem Biol 12:260–268. doi: 10.1016/j.cbpa.2008.02.005 CrossRefGoogle Scholar
  3. 3.
    Hajduk PJ, Greer J (2007) Nat Rev Drug Discov 6:211–219. doi: 10.1038/nrd2220 CrossRefGoogle Scholar
  4. 4.
    Albert JS, Blomberg N, Breeze AL, Brown AJH, Burrows JN, Edwards PD, Folmer RHA, Geschwindner S, Griffen EJ, Kenny PW, Nowak T, Olsson L-L, Sanganee H, Shapiro AB (2007) Curr Top Med Chem 7:1600–1629. doi: 10.2174/156802607782341091 CrossRefGoogle Scholar
  5. 5.
    Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Curr Opin Chem Biol 11:485–493. doi: 10.1016/j.cbpa.2007.07.010 CrossRefGoogle Scholar
  6. 6.
    Barker J, Courtney S, Hesterkamp T, Ullmann D, Whittaker M (2005) Exp Opin Drug Discov 1:225–236. doi: 10.1517/17460441.1.3.225 CrossRefGoogle Scholar
  7. 7.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403–413. doi: 10.1021/jm0495778 CrossRefGoogle Scholar
  8. 8.
    Erlanson DA, McDowell RS, O’Brien T (2004) J Med Chem 47:3463–3482. doi: 10.1021/jm040031v CrossRefGoogle Scholar
  9. 9.
    DeLano WL (2002) Curr Opin Struct Biol 12:14–20. doi: 10.1016/S0959-440X(02)00283-X CrossRefGoogle Scholar
  10. 10.
    Bogan AA, Thorn KS (1998) J Mol Biol 280:1–9. doi: 10.1006/jmbi.1998.1843 CrossRefGoogle Scholar
  11. 11.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Science 274:1531–1534. doi: 10.1126/science.274.5292.1531 CrossRefGoogle Scholar
  12. 12.
    Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, Ringe D (1996) J Phys Chem 100:2605–2611. doi: 10.1021/jp952516o CrossRefGoogle Scholar
  13. 13.
    Miranker A, Karplus M (1991) Prot Struct Funct Genet 11:29–34. doi: 10.1002/prot.340110104 CrossRefGoogle Scholar
  14. 14.
    Boehm H-J (1992) J Comput Aided Mol Des 6:61–78. doi: 10.1007/BF00124387 CrossRefGoogle Scholar
  15. 15.
    Goodford PJ (1985) J Med Chem 28:849–857. doi: 10.1021/jm00145a002 CrossRefGoogle Scholar
  16. 16.
    Jencks WP (1981) Proc Natl Acad Sci USA 78:4046–4050. doi: 10.1073/pnas.78.7.4046 CrossRefGoogle Scholar
  17. 17.
    Teague SJ, Davis AM, Leeson PD, Oprea T (1999) Angew Chem Int Ed 38:3743–3748. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U CrossRefGoogle Scholar
  18. 18.
    Colclough N, Hunter A, Kenny PW, Kittlety RS, Lobedan L, Tam KY, Timms MA (2008) Bioorg Med Chem 16:6611–6616. doi: 10.1016/j.bmc.2008.05.021 CrossRefGoogle Scholar
  19. 19.
    Schuffenhauer A, Ruedisser S, Marzinzik A, Jahnke W, Selzer P, Jacoby E (2005) Curr Top Med Chem 5:751–762. doi: 10.2174/1568026054637700 CrossRefGoogle Scholar
  20. 20.
    Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) J Chem Inf Comput Sci 44:2157–2166. doi: 10.1021/ci049806z Google Scholar
  21. 21.
    Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay Murcko, MA MooreJM (1999) Chem Biol 6:755–769. doi: 10.1016/S1074-5521(00)80022-8 CrossRefGoogle Scholar
  22. 22.
    Erlanson DA, Wells JA, Braisted AC (2004) Annu Rev Biophys Biomol Struct 33:199–223. doi: 10.1146/annurev.biophys.33.110502.140409 CrossRefGoogle Scholar
  23. 23.
    Thanos CD, Randal M, Wells JA (2003) J Am Chem Soc 125:15280–15281. doi: 10.1021/ja0382617 CrossRefGoogle Scholar
  24. 24.
    Congreve M, Carr R, Murray C, Jhoti H (2003) Drug Discov Today 8:876–877. doi: 10.1016/S1359-6446(03)02831-9 CrossRefGoogle Scholar
  25. 25.
    Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) J Med Chem 49:656–663. doi: 10.1021/jm0507532 CrossRefGoogle Scholar
  26. 26.
    Hann MM, Leach AR, Harper G (2001) J Chem Inf Comput Sci 41:856–864. doi: 10.1021/ci000403i Google Scholar
  27. 27.
    Boehm H-J, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) J Med Chem 43:2664–2674. doi: 10.1021/jm000017s CrossRefGoogle Scholar
  28. 28.
    Hohwy M, Spadola L, Lundquist B, Hawtin P, Dahmén J, Groth-Clausen I, Nilsson E, Persdotter S, Von Wachenfeldt K, Folmer RHA, Edman K (2008) J Med Chem 51:2178–2186. doi: 10.1021/jm701509k CrossRefGoogle Scholar
  29. 29.
    Geschwindner S, Olsson L-L, Albert JS, Deinum J, Edwards PD, De Beer T, Folmer RHA (2007) J Med Chem 50:5903–5911. doi: 10.1021/jm070825k CrossRefGoogle Scholar
  30. 30.
    Edwards PD, Albert J, Sylvester M, Aharony D, Andisik D, Campbell J, Chessari G, Congreve M, Folmer RHA, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Olsson L-L, Patel S, Spear N, Tian G (2007) J Med Chem 50:5912–5925. doi: 10.1021/jm070829p CrossRefGoogle Scholar
  31. 31.
    Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, Godfrey L, Kenny PW, Morley AD, Minshull CA, Pannifer AD, Read J, Rees A, Russell DJ, Toader D, Tucker J (2005) Bioorg Med Chem Lett 15:2503–2507. doi: 10.1016/j.bmcl.2005.03.068 CrossRefGoogle Scholar
  32. 32.
    Breeze AL, Green OM, Hull KG, Ni H, Hauck SI, Mullen GB, Hales NJ, Timms D (2005) Preparation of pyrroles as antibacterial agents. (2005) WO 2005026149Google Scholar
  33. 33.
    Kogej T, Engkvist O, Blomberg N, Muresan S (2006) J Chem Inf Model 46:1201–1213. doi: 10.1021/ci0504723 CrossRefGoogle Scholar
  34. 34.
    Fingerprint theory manual, Daylight Chemical Information Systems Inc., Aliso Viejo, CA 92656, USA. http://www.daylight.com/dayhtml/doc/theory/theory.finger.html, accessed 26th November 2008
  35. 35.
    Flower DR (1998) J Chem Inf Comput Sci 38:379–386. doi: 10.1021/ci970437z Google Scholar
  36. 36.
  37. 37.
    Adamson GW, Lynch MF, Town WG (1971) J Chem Soc C 1971:3702–3706. doi: 10.1039/j39710003702 CrossRefGoogle Scholar
  38. 38.
    Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) J Med Chem 39:3049–3059. doi: 10.1021/jm960290n CrossRefGoogle Scholar
  39. 39.
    Krumrine JR, Maynard AT, Lerman CL (2005) J Med Chem 48:7477–7481. doi: 10.1021/jm0501026 CrossRefGoogle Scholar
  40. 40.
    Nilakantan R, Nunn DS (2003) Drug Discov Today 8:668–672. doi: 10.1016/S1359-6446(03)02793-4 CrossRefGoogle Scholar
  41. 41.
    Taylor R (1995) J Chem Inf Comput Sci 35:59–67. doi: 10.1021/ci00023a009 Google Scholar
  42. 42.
    Butina D (1999) J Chem Inf Comput Sci 39:747–750. doi: 10.1021/ci9803381 Google Scholar
  43. 43.
    SMARTS theory manual, Daylight Chemical Information Systems Inc., Aliso Viejo, CA 92656, USA. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html, accessed 19th December 2008
  44. 44.
    Kenny PW, Sadowski J (2005) Structure modification in chemical databases. Methods and Principles in Medicinal Chemistry, vol 23 (Chemoinformatics in Drug Discovery), pp 271–285. http://dx.doi.org/10.1002/3527603743.ch11
  45. 45.
    Grant JA, Pickup BT (1995) J Phys Chem 99:3503–3510. doi: 10.1021/j100011a016 CrossRefGoogle Scholar
  46. 46.
    Haigh JA, Pickup BT, Grant JA, Nicholls A (2005) J Chem Inf Model 45:673–684. doi: 10.1021/ci049651v CrossRefGoogle Scholar
  47. 47.
    Matzen L, Engesgaard A, Ebert B, Didriksen M, Frølund B, Krogsgaard-Larsen P, Jaroszewski JW (1997) J Med Chem 40:520–527. doi: 10.1021/jm9607212 CrossRefGoogle Scholar
  48. 48.
    Herr RJ (2002) Bioorg Med Chem 10:3379–3393. doi: 10.1016/S0968-0896(02)00239-0 CrossRefGoogle Scholar
  49. 49.
    Bell PH, Roblin RO (1942) J Am Chem Soc 64:2905–2917. doi: 10.1021/ja01264a055 CrossRefGoogle Scholar
  50. 50.
    Lipinski CA, Fiese EF, Korst RJ (1991) Quant Struct Act Relat 10:109–117. doi: 10.1002/qsar.19910100205 CrossRefGoogle Scholar
  51. 51.
    ROCS OpenEye Scientific Software, Santa Fe, New Mexico, USA http://www.eyesopen.com/products/applications/rocs.html

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Niklas Blomberg
    • 1
  • David A. Cosgrove
    • 2
  • Peter W. Kenny
    • 2
  • Karin Kolmodin
    • 3
  1. 1.AstraZeneca R&D MölndalMölndalSweden
  2. 2.AstraZeneca R&D Alderley ParkMacclesfieldUK
  3. 3.AstraZeneca R&D SödertäljeSödertäljeSweden

Personalised recommendations