Journal of Computer-Aided Molecular Design

, Volume 23, Issue 3, pp 171–184 | Cite as

VSDMIP: virtual screening data management on an integrated platform

  • Rubén Gil-Redondo
  • Jorge Estrada
  • Antonio MorrealeEmail author
  • Fernando Herranz
  • Javier Sancho
  • Ángel R. Ortiz


A novel software (VSDMIP) for the virtual screening (VS) of chemical libraries integrated within a MySQL relational database is presented. Two main features make VSDMIP clearly distinguishable from other existing computational tools: (i) its database, which stores not only ligand information but also the results from every step in the VS process, and (ii) its modular and pluggable architecture, which allows customization of the VS stages (such as the programs used for conformer generation or docking), through the definition of a detailed workflow employing user-configurable XML files. VSDMIP, therefore, facilitates the storage and retrieval of VS results, easily adapts to the specific requirements of each method and tool used in the experiments, and allows the comparison of different VS methodologies. To validate the usefulness of VSDMIP as an automated tool for carrying out VS several experiments were run on six protein targets (acetylcholinesterase, cyclin-dependent kinase 2, coagulation factor Xa, estrogen receptor alpha, p38 MAP kinase, and neuraminidase) using nine binary (actives/inactive) test sets. The performance of several VS configurations was evaluated by means of enrichment factors and receiver operating characteristic plots.


Docking Virtual screening Drug design Database Platform 





Coagulation factor Xa


Cyclic dependant kinase 2


Estrogen receptor a


MAP Kinase P38


Virtual Screening


Enrichment Factor


Receiver Operating Characteristic



Work at the CBM-SO was partially supported by a grant from “Comunidad de Madrid” thorough BIPEDD project (SBIO-0214–2006) and from “Ministerio de Educación y Ciencia” (BIO2005–0576). J.S. and J.E. were funded by grants BFU2007–61476/BMC (MEC, Spain) and PM076/2006 (DGA, Spain). J.E.’s research stage at CBM “Severo Ochoa” was funded by grants DGA (CONSI + D)/CAI (Spain) and FPU (MEC, Spain). J.E. is recepient of an FPU grant (MEC, Spain). J.E. thanks Alejandra Leo-Macías for help in using the MODELLER software. A.M. and R.G.-R. thank David Abia and Rubén Muñoz for technical support. We also acknowledge the generous allocation of computer time at the Barcelona Supercomputing Center. This work would not have been possible without the encouraging help of Ángel R. Ortiz, to whose memory this article is dedicated.


  1. 1.
    Smith A (2002) Nature 418:453Google Scholar
  2. 2.
    Lahana R (1999) Drug Discov Today 4:447. doi: 10.1016/S1359-6446(99)01393-8 CrossRefGoogle Scholar
  3. 3.
    Ramesha CS (2000) Drug Discov Today 5:43. doi: 10.1016/S1359-6446(99)01444-0 CrossRefGoogle Scholar
  4. 4.
    Perola E, Walters WP, Charifson PS (2004) Proteins 56:235. doi: 10.1002/prot.20088 CrossRefGoogle Scholar
  5. 5.
    Warren GL, Andrews CW, Capelli AM et al (2006) J Med Chem 49:5912. doi: 10.1021/jm050362n CrossRefGoogle Scholar
  6. 6.
    Kitchen DB, Decornez H, Furr JR et al (2004) Nat Rev Drug Discov 3:935. doi: 10.1038/nrd1549 CrossRefGoogle Scholar
  7. 7.
    Adcock SA, McCammon JA (2006) Chem Rev 106:1589. doi: 10.1021/cr040426m CrossRefGoogle Scholar
  8. 8.
    Brandsdal BO, Osterberg F, Almlof M et al (2003) Adv Protein Chem 66:123. doi: 10.1016/S0065-3233(03)66004-3 CrossRefGoogle Scholar
  9. 9.
    Shoichet BK (2004) Nature 432:862. doi: 10.1038/nature03197 CrossRefGoogle Scholar
  10. 10.
    Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851. doi: 10.1021/jm060999m CrossRefGoogle Scholar
  11. 11.
    Corina Molecular Networks (2000). GmbH Computerchemie Langemarckplatz 1, Erlangen, Germany. Accessed 24 Sept 2008
  12. 12.
    Gil-Redondo R (2006) Master Thesis: Implementación de una plataforma para el cribado virtual de quimiotecas. UNED, MadridGoogle Scholar
  13. 13.
    Stewart JJ (1990) J Comput Aided Mol Des 4:1. doi: 10.1007/BF00128336 CrossRefGoogle Scholar
  14. 14.
    Kuntz ID, Blaney JM, Oatley SJ et al (1982) J Mol Biol 161:269. doi: 10.1016/0022-2836(82)90153-X CrossRefGoogle Scholar
  15. 15.
    McGann MR, Almond HR, Nicholls A et al (2003) Biopolymers 68:76. doi: 10.1002/bip.10207 CrossRefGoogle Scholar
  16. 16.
    Perez C, Ortiz AR (2001) J Med Chem 44:3768. doi: 10.1021/jm010141r CrossRefGoogle Scholar
  17. 17.
    Morris GM, Goodsell DS, Halliday RS et al (1998) J Comput Chem 19:1639. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BCrossRefGoogle Scholar
  18. 18.
    Rocchia W, Sridharan S, Nicholls A et al (2002) J Comput Chem 23:128. doi: 10.1002/jcc.1161 CrossRefGoogle Scholar
  19. 19.
    Morreale A, Gil-Redondo R, Ortiz AR (2007) Proteins 67:606. doi: 10.1002/prot.21269 CrossRefGoogle Scholar
  20. 20.
    Lipinski CA, Lombardo F, Dominy BW et al (2001) Adv Drug Deliv Rev 46:3. doi: 10.1016/S0169-409X(00)00129-0 CrossRefGoogle Scholar
  21. 21.
    Triballeau N, Acher F, Brabet I et al (2005) J Med Chem 48:2534. doi: 10.1021/jm049092j CrossRefGoogle Scholar
  22. 22.
    Weininger D (1988) J Chem Inf Comput Sci 28:31. doi: 10.1021/ci00057a005 Google Scholar
  23. 23.
    Ctfile Formats MDL (2007). Symyx, California. Accessed 24 Sept 2008
  24. 24.
    Dewar MJS, Thiel W (1977) J Am Chem Soc 99:2338. doi: 10.1021/ja00449a053 CrossRefGoogle Scholar
  25. 25.
    Maignan S, Guilloteau JP, Pouzieux S et al (2000) J Med Chem 43:3226. doi: 10.1021/jm000940u CrossRefGoogle Scholar
  26. 26.
    Murcia M, Ortiz AR (2004) J Med Chem 47:805. doi: 10.1021/jm030137a CrossRefGoogle Scholar
  27. 27.
    Jacobsson M, Liden P, Stjernschantz E et al (2003) J Med Chem 46:5781. doi: 10.1021/jm030896t CrossRefGoogle Scholar
  28. 28.
    Kryger G, Silman I, Sussman JL (1999) Structure 7:297. doi: 10.1016/S0969-2126(99)80040-9 CrossRefGoogle Scholar
  29. 29.
    Arris CE, Boyle FT, Calvert AH et al (2000) J Med Chem 43:2797. doi: 10.1021/jm990628o CrossRefGoogle Scholar
  30. 30.
    Thomas MP, McInnes C, Fischer PM (2006) J Med Chem 49:92. doi: 10.1021/jm050554i CrossRefGoogle Scholar
  31. 31.
    Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759. doi: 10.1021/jm001044l CrossRefGoogle Scholar
  32. 32.
    Shiau AK, Barstad D, Loria PM et al (1998) Cell 95:927. doi: 10.1016/S0092-8674(00)81717-1 CrossRefGoogle Scholar
  33. 33.
    Burmeister WP, Henrissat B, Bosso C et al (1993) Structure 1:19. doi: 10.1016/0969-2126(93)90005-2 CrossRefGoogle Scholar
  34. 34.
    Murray CW, Baxter CA, Frenkel AD (1999) J Comput Aided Mol Des 13:547. doi: 10.1023/A:1008015827877 CrossRefGoogle Scholar
  35. 35.
    Cavasotto CN, Abagyan RA (2004) J Mol Biol 337:209. doi: 10.1016/j.jmb.2004.01.003 CrossRefGoogle Scholar
  36. 36.
    Wang Z, Harkins PC, Ulevitch RJ et al (1997) Proc Natl Acad Sci USA 94:2327. doi: 10.1073/pnas.94.6.2327 CrossRefGoogle Scholar
  37. 37.
    Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) Protein Sci 12:2001. doi: 10.1110/ps.03154503 CrossRefGoogle Scholar
  38. 38.
    Fiser A, Sali A (2003) Methods Enzymol 374:461. doi: 10.1016/S0076-6879(03)74020-8 CrossRefGoogle Scholar
  39. 39.
    Case DA, Darden TA, Cheatham TE et al (2004) AMBER 8. University of California, San FranciscoGoogle Scholar
  40. 40.
    Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049. doi:10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-FCrossRefGoogle Scholar
  41. 41.
    Gordon JC, Myers JB, Folta T et al (2005) Nucleic Acids Res 33:W368. doi: 10.1093/nar/gki464 CrossRefGoogle Scholar
  42. 42.
    Honig B, Nicholls A (1995) Science 268:1144. doi: 10.1126/science.7761829 CrossRefGoogle Scholar
  43. 43.
    Tishmack PA, Bashford D, Harms E et al (1997) Biochemistry 36:11984. doi: 10.1021/bi9712448 CrossRefGoogle Scholar
  44. 44.
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246:122. doi: 10.1016/0009-2614(95)01082-K CrossRefGoogle Scholar
  45. 45.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824. doi: 10.1021/jp961710n CrossRefGoogle Scholar
  46. 46.
    Tsui V, Case DA (2000) Biopolymers 56:275. doi:10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-ECrossRefGoogle Scholar
  47. 47.
    Golebiowski A, Townes JA, Laufersweiler MJ et al (2005) Bioorg Med Chem Lett 15:2285. doi: 10.1016/j.bmcl.2005.03.007 CrossRefGoogle Scholar
  48. 48.
    Mehler EL, Solmajer T (1991) Protein Eng 4:903. doi: 10.1093/protein/4.8.903 CrossRefGoogle Scholar
  49. 49.
    Wang K, Murcia M, Constans P et al (2004) J Comput Aided Mol Des 18:101. doi: 10.1023/B:jcam.0000030033.26053.40 CrossRefGoogle Scholar
  50. 50.
    Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11. doi: 10.1023/A:1016357811882 CrossRefGoogle Scholar
  51. 51.
    Tripos Mol2 File Format (2007). Tripos LP, Missouri. Accessed 24 Sept 2008
  52. 52.
    Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978. doi: 10.1021/j100058a043 CrossRefGoogle Scholar
  53. 53.
    Molecular Modeling Package TINKER (2004). Accessed 24 Sept 2008
  54. 54.
    DeLano WL (2002). The PyMOL Molecular Graphics System DeLano Scientific, Palo Alto, CA. Accessed 24 Sept 2008
  55. 55.
    Kollman PA, Massova I, Reyes C et al (2000) Acc Chem Res 33:889. doi: 10.1021/ar000033j CrossRefGoogle Scholar
  56. 56.
    SciTegic, Inc. 10188 Telesis Court, Suite 100, San Diego, CA 92121, USA, Accesed 24 Sept 2008
  57. 57.
    Hassan M, Brown RD, Varma-O’brien S (2006) Mol Divers 10:283. doi: 10.1007/s11030-006-9041-5 CrossRefGoogle Scholar
  58. 58.
    Watson P, Verdonk M, Hartshorn MJ (2003) J Mol Graph Model 22:71. doi: 10.1016/S1093-3263(03)00137-2 CrossRefGoogle Scholar
  59. 59.
    Lehtovuori PT, Nyronen TH (2006) J Chem Inf Model 46:620. doi: 10.1021/ci050388n CrossRefGoogle Scholar
  60. 60.
    Vaque M, Arola A, Aliagas C et al (2006) Bioinformatics 22:1803. doi: 10.1093/bioinformatics/btl197 CrossRefGoogle Scholar
  61. 61.
    Zhang S, Kumar K, Jiang X et al (2008) BMC Bioinformatics 9:126. doi: 10.1186/1471-2105-9-126 CrossRefGoogle Scholar
  62. 62.
    Yang JM, Chen YF, Shen TW et al (2005) J Chem Inf Model 45:1134. doi: 10.1021/ci050034w CrossRefGoogle Scholar
  63. 63.
    Maiorov V, Sheridan RP (2005) J Chem Inf Model 45:1017. doi: 10.1021/ci050089y CrossRefGoogle Scholar
  64. 64.
    Miteva MA, Lee WH, Montes MO et al (2005) J Med Chem 48:6012. doi: 10.1021/jm050262h CrossRefGoogle Scholar
  65. 65.
    Knox AJ, Meegan MJ, Carta G et al (2005) J Chem Inf Model 45:1908. doi: 10.1021/ci050185z CrossRefGoogle Scholar
  66. 66.
    Teague SJ (2003) Nat Rev Drug Discov 2:527. doi: 10.1038/nrd1129 CrossRefGoogle Scholar
  67. 67.
    Huang N, Kalyanaraman C, Irwin JJ (2006) J Chem Inf Model 46:243. doi: 10.1021/ci0502855 CrossRefGoogle Scholar
  68. 68.
    Kuhn B, Gerber P, Schulz-Gasch T (2005) J Med Chem 48:4040. doi: 10.1021/jm049081q CrossRefGoogle Scholar
  69. 69.
    Ruiz FM, Gil-Redondo R, Morreale A (2008) J Chem Inf Model 48:844. doi: 10.1021/ci700447r CrossRefGoogle Scholar
  70. 70.
    Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177. doi: 10.1021/ci049714+ CrossRefGoogle Scholar
  71. 71.
    Gil-Redondo R, Estrada J, Morreale A, et al. (2008). VSDMIP. CBM “Severo Ochoa” (CSIC-UAM) and Universidad de Zaragoza, Spain. Accessed 24 Sept 2008

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rubén Gil-Redondo
    • 1
  • Jorge Estrada
    • 2
  • Antonio Morreale
    • 1
    Email author
  • Fernando Herranz
    • 1
  • Javier Sancho
    • 2
  • Ángel R. Ortiz
    • 1
  1. 1.Unidad De Bioinformática, Centro De Biología Molecular Severo Ochoa (CSIC-UAM)MadridSpain
  2. 2.Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI –Instituto de Biocomputación y Física de Sistemas Complejos, c/Pedro Cerbuna 12Universidad de ZaragozaZaragozaSpain

Personalised recommendations