Computational study on the molecular inclusion of andrographolide by cyclodextrin

  • Hongwei Zhou
  • Wai-Ping Lai
  • Zhiqiang Zhang
  • Wai-Kee Li
  • Hon-Yeung CheungEmail author


Due to the poor water solubility of andrographolide (andro), an inclusion technique has been developed to modify its physical and chemical properties so as to improve its bioavailability. In contrast with the immense experimental studies on the inclusion complexes of andro:cyclodextrin, no computational study has so far been carried out on this system. In this work, preliminary docking experiments with AutoDock were performed. Density Functional Theory (DFT) and Austin Model 1 (AM1) calculations upon the docking instances were applied to investigate the two possible modes of molecular inclusions between andro and x-cyclodextrin (xCD, where x is α, β or γ). Atoms-in-Molecules (AIM) analysis based on the B3LYP/cc-pVDZ wavefunction was applied to verify the existence of the intermolecular hydrogen bonds. It was found that the most stable complex among the six possible inclusion complexes was the one formed between andro and βCD with andro’s decalin ring moiety wrapped by CD at a ratio of 1:1. The hydrogen bonds between andro and CD were responsible for the stability of the inclusion complexes. The calculated data were found to be consistent with the experimental results. Thus, the results of this study can aid new drug design processes.


Andrographolide Cyclodextrin Inclusion complex Hydrogen bond 



This work was fully supported by a Strategic Research Grant from the City University of Hong Kong (Project No. 7002109). Financial supports for the purchase of a computational device from the Innovation and Technology Fund (Project No. GHP/070/05) of Hong Kong Government is also acknowledged. The authors would also like to express their gratitude to Dr N.B. Wong for his advice and support on the calculation part of this work.

Supplementary material

10822_2008_9247_MOESM1_ESM.doc (678 kb)
MOESM1 FTIR (Fourier-transform infrared spectroscopy) spectrum of spray dried Particles with different molar ratio of andro and CDs, the bond path lengths, the electron density (ρ), the Laplacian of ρ (∇2ρ), etc. (DOC 678 kb)


  1. 1.
    Fujita T, Takeda Y, Takaishi Y, Yamada T, Kido M, Miura I (1984) Chem Pharm Bull (Tokyo) 32:2117Google Scholar
  2. 2.
    Sheeja K, Guruvayoorappan C, Kuttan G (2007) Int Immunopharmacol 7:211. doi: 10.1016/j.intimp.2006.10.002 CrossRefGoogle Scholar
  3. 3.
    Hebtemariam S (1998) Phytother Res 12:37. doi :10.1002/(SICI)1099-1573(19980201)12:1<37::AID-PTR186>3.0.CO;2-NCrossRefGoogle Scholar
  4. 4.
    Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS (1993) J Nat Prod 56:995. doi: 10.1021/np50097a002 CrossRefGoogle Scholar
  5. 5.
    Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS et al (2007) Phytochemistry 68:904. doi: 10.1016/j.phytochem.2006.11.031 CrossRefGoogle Scholar
  6. 6.
    Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2006) J Pharm Pharmacol 58:1227. doi: 10.1211/jpp.58.9.0009 CrossRefGoogle Scholar
  7. 7.
    Xu Y, Chen A, Fry S, Barrow RA, Marshall RL, Mukkur TKS (2007) Int Immunopharmacol 7:515. doi: 10.1016/j.intimp.2006.12.008 CrossRefGoogle Scholar
  8. 8.
    Cheung HY, Cheung SH, Li JL, Cheung CS, Lai WP, Fong WF, Leung FM (2005) Planta Med 71:1106. doi: 10.1055/s-2005-873128 CrossRefGoogle Scholar
  9. 9.
    Li JL, Cheung HY, Zhang ZQ, Chan GKL, Fong WF (2007) Eur J Pharmacol 568:31. doi: 10.1016/j.ejphar.2007.04.027 CrossRefGoogle Scholar
  10. 10.
    Sheeja K, Kuttan G (2007) Immunopharmacol Immunotoxicol 29:81. doi: 10.1080/08923970701282726 CrossRefGoogle Scholar
  11. 11.
    Zhao DY, Liao KJ, Ma XY, Yan XH (2002) J Incl Phenom 43:259. doi: 10.1023/A:1021223407297 CrossRefGoogle Scholar
  12. 12.
    Ma XY, Liao ZX, Zhaong YL, Chen YZ (2000) J Incl Phenom 36:335. doi: 10.1023/A:1008199827029 CrossRefGoogle Scholar
  13. 13.
    Szejtli J (1998) Chem Rev 98:1743. doi: 10.1021/cr970022c CrossRefGoogle Scholar
  14. 14.
    Uekama K, Hirayama F, Lrie T (1998) Chem Rev 98:2045. doi: 10.1021/cr970025p CrossRefGoogle Scholar
  15. 15.
    Goodsell DS, Olson AJ (1990) Proteins: Struc Funct Genet 8:195. doi: 10.1002/prot.340080302 CrossRefGoogle Scholar
  16. 16.
    Morris GM, Goodsell DS, Hury R, Olson AJ (1996) J Comput Aided Mol Des 10:293. doi: 10.1007/BF00124499 CrossRefGoogle Scholar
  17. 17.
    Morris GM, Goodsell DS, Halliday RS, Hury R, Hart WE, Belew RK et al (1998) J Comput Chem 19:1639. doi :10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BCrossRefGoogle Scholar
  18. 18.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902. doi: 10.1021/ja00299a024 CrossRefGoogle Scholar
  19. 19.
    Dewar MJS, Jie CX, Yu JG (1993) Tetrahedron 49:5003. doi: 10.1016/S0040-4020(01)81868-8 CrossRefGoogle Scholar
  20. 20.
    Freire RO, Rocha GB, Simas AM (2005) Inorg Chem 44:3299. doi: 10.1021/ic048530+ CrossRefGoogle Scholar
  21. 21.
    Rocha GB, Freire RO, Simas AM, Stewart JP (2006) J Comput Chem 27:1101. doi: 10.1002/jcc.20425 CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2003) GAUSSIAN 03 (revision B05). Gaussian Inc, PittsburghGoogle Scholar
  23. 23.
    Popelier PLA (2001) Theor Chem Acc 105:393. doi: 10.1007/s002140000224 Google Scholar
  24. 24.
    Schwinger J (1981) Phys Rev A 24:2353. doi: 10.1103/PhysRevA.24.2353 CrossRefGoogle Scholar
  25. 25.
    Becke AD (1982) J Chem Phys 76:6037. doi: 10.1063/1.442958 CrossRefGoogle Scholar
  26. 26.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, OxfordGoogle Scholar
  27. 27.
    Popelier PLA, Aicken FM, O’Brien SE (2000) In: Hinchliffe A (ed) Chemical modelling: applications and theory, vol 1. The Royal Society of Chemistry, Cambridge, 143 ppGoogle Scholar
  28. 28.
    Kosov DS, Popelier PLA (2000) J Phys Chem A 104:7339. doi: 10.1021/jp0003407 CrossRefGoogle Scholar
  29. 29.
    Cioslowski J, Mixon ST (1991) J Am Chem Soc 113:4142. doi: 10.1021/ja00011a014 CrossRefGoogle Scholar
  30. 30.
    Ángyán JG, Loos M, Mayer I (1991) J Phys Chem 98:5244. doi: 10.1021/j100071a013 CrossRefGoogle Scholar
  31. 31.
    Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304. doi: 10.1021/jp983362q CrossRefGoogle Scholar
  32. 32.
    Popelier PLA (1996) Mol Phys 87:1169. doi: 10.1080/00268979650027072 CrossRefGoogle Scholar
  33. 33.
    Angyan JG, Jansen G, Loos M, Haettig C, Hess BA (1994) Chem Phys Lett 219:267. doi: 10.1016/0009-2614(94)87056-X CrossRefGoogle Scholar
  34. 34.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747. doi: 10.1021/j100024a016 CrossRefGoogle Scholar
  35. 35.
    Biegler-Künig F, Schünbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000 version 2.0. McMaster University, HamiltonGoogle Scholar
  36. 36.
    Stuenkel CA, Dudley RE, Yen SS (1991) J Clin Endocrinol Metab 72:1054CrossRefGoogle Scholar
  37. 37.
    Roberts WJ (2003) US Pat Appl Publ, 10 pp, US 2003134831 A1 20030717Google Scholar
  38. 38.
    Zhao DY, Yang SH, Hu M, Ma XY (2003) Chin Chem Lett 14:155Google Scholar
  39. 39.
    Khomutov SM, Sidorov IA, Dovbnya DV, Donova MV (2002) J Pharm Pharmacol 54:617. doi: 10.1211/0022357021778925 CrossRefGoogle Scholar
  40. 40.
    Singer Y, Shity H, Bar R (1991) Appl Microbiol Biotechnol 35:731. doi: 10.1007/BF00169886 CrossRefGoogle Scholar
  41. 41.
    Torricelli C, Martini A, Muggetti L, De Ponti R (1991) Int J Pharm 71:19. doi: 10.1016/0378-5173(91)90063-T CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hongwei Zhou
    • 1
  • Wai-Ping Lai
    • 1
  • Zhiqiang Zhang
    • 1
  • Wai-Kee Li
    • 2
  • Hon-Yeung Cheung
    • 1
    Email author
  1. 1.Research Group for Bioactive Products, Department of Biology and ChemistryCity University of Hong KongKowloonHong Kong
  2. 2.Department of ChemistryThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations