Journal of Computer-Aided Molecular Design

, Volume 22, Issue 2, pp 111–118 | Cite as

FTree query construction for virtual screening: a statistical analysis

  • Christof Gerlach
  • Howard Broughton
  • Andrea ZalianiEmail author


FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors’ catalogue collections and MDDR as a source of potential or known “actives”, respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.


Feature trees MDDR ZINC Query building Database profiling FTrees 



We are in debt to Joerg Degen and Prof. Matthias Rarey (ZBH, Hamburg) for their suggestions and to the reviewers for their constructing criticism.

Supplementary material

10822_2008_9178_MOESM1_ESM.xls (18 kb)
(XLS 18 kb)
10822_2008_9178_MOESM2_ESM.txt (85 kb)
(TXT 85 kb)
10822_2008_9178_MOESM3_ESM.txt (35 kb)
(TXT 36 kb)
10822_2008_9178_MOESM4_ESM.txt (501 kb)
(TXT 502 kb)
10822_2008_9178_MOESM5_ESM.txt (378 kb)
(TXT 378 kb)
10822_2008_9178_MOESM6_ESM.txt (197 kb)
(TXT 197 kb)
10822_2008_9178_MOESM7_ESM.txt (215 kb)
(TXT 215 kb)


  1. 1.
    Willett P (2006) Drug Discov Today 11:1046CrossRefGoogle Scholar
  2. 2.
    Stiefl N, Zaliani A (2006) J Chem Inf Model 46:87Google Scholar
  3. 3.
    Stiefl N, Watson IA, Baumann K, Zaliani A (2006) J Chem Inf Model 46:208CrossRefGoogle Scholar
  4. 4.
    Fechner U, Paetz J, Schneider G (2005) QSAR Comb Sci 24(8):961CrossRefGoogle Scholar
  5. 5.
    Gillet VJ, Willett P, Bradshaw J (2003) J Chem Inf Comput Sci 43:338CrossRefGoogle Scholar
  6. 6.
    Bajorath J (2002) Nat Rev Drug Discov 1:882CrossRefGoogle Scholar
  7. 7.
    Bajorath J (2002) Drug Discov Today 7:1035CrossRefGoogle Scholar
  8. 8.
    Tanimoto TT (1957) IBM Internal ReportGoogle Scholar
  9. 9.
    Rarey M, Stahl M (2001) J Comput Aided Mol Des 15(6):497–520CrossRefGoogle Scholar
  10. 10.
    Rarey M, Dixon JS (1998) J Comput Aided Mol Des 12:471CrossRefGoogle Scholar
  11. 11.
    Bender A, Mussa HY, Gill GS, Glen RC (2004) J Med Chem 47:6569CrossRefGoogle Scholar
  12. 12.
    Evers A, Hessler G, Matter H, Klabunde T (2005) J Med Chem 48:5448CrossRefGoogle Scholar
  13. 13.
    Bissantz C, Schalon C, Guba W, Stahl M (2005) Proteins 61:938CrossRefGoogle Scholar
  14. 14.
    Schneider G, Schneider P, Renner S (2006) QSAR Comb Sci 25:1162CrossRefGoogle Scholar
  15. 15.
    Renner S, Schneider G (2006) ChemMedChem 1:181CrossRefGoogle Scholar
  16. 16.
    Klebe G (2006) Drug Discov Today 11:580CrossRefGoogle Scholar
  17. 17.
    Hartshorn MJ, Murray CA, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) J Med Chem 48:403CrossRefGoogle Scholar
  18. 18.
    Hajduk PJ, Huth JR, Fesik SW (2005) J Med Chem 48:2518CrossRefGoogle Scholar
  19. 19.
    Hessler G, Zimmermann M, Matter H, Evers A, Naumann T, Lengauer T, Rarey M (2005) J Med Chem 48:6575CrossRefGoogle Scholar
  20. 20.
    The MDL Drug Data Report is available from MDL Information Systems Inc., San Leandro CAGoogle Scholar
  21. 21.
    Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Gasteiger J, Rudolph C, Sadowski J (1992) Tetrahedron Comput Method 3:537CrossRefGoogle Scholar
  24. 24. (accessed Dec 2007)
  25. 25.
    FTrees 1.5.1, (accessed Dec 2007) available from BioSolveIT, St. Augustin, Germany
  26. 26. (accessed Dec 2007)
  27. 27. (accessed Dec 2007)
  28. 28.
    Filla SA, Mathes BM, Johnson KW, Phebus LA, Cohen ML, Nelson DL, Zgombick JM, Erickson JA, Schenck KW, Wainscott DB, Branchek TA, Schaus JM (2003) J Med Chem 46:3060CrossRefGoogle Scholar
  29. 29.
    Dixon SL, Smondyrev AM, Rao SN (2006) Chem Biol Drug Des 67:370CrossRefGoogle Scholar
  30. 30.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) J Comput Aided Mol Des 20:647CrossRefGoogle Scholar
  31. 31. (accessed Dec 2007)
  32. 32.
  33. 33.
    Brenk R, Naerum L, Gradler U, Gerber HD, Garcia GA, Reuter K, Stubbs MT, Klebe G (2003) J Med Chem 46:1133CrossRefGoogle Scholar
  34. 34.
    Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, Durst GL, Hipskind PA (2004) J Med Chem 47:224CrossRefGoogle Scholar
  35. 35.
    Teague SJ, Davis AM, Leeson PD, Oprea T (1999) Angew Chem Int Ed 38:3743CrossRefGoogle Scholar
  36. 36.
    Laurie AT, Jackson RM (2005) Bioinformatics 21:1908CrossRefGoogle Scholar
  37. 37.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliv Rev 46:3CrossRefGoogle Scholar
  38. 38.
    Carr RA, Congreve M, Murray CW, Rees DC (2005) Drug Discov Today 10:987CrossRefGoogle Scholar
  39. 39.
    Rarey M, Stahl M (2001) J Comput Aided Mol Des 15:497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christof Gerlach
    • 1
    • 2
  • Howard Broughton
    • 3
  • Andrea Zaliani
    • 1
    • 4
    Email author
  1. 1.Eli Lilly & Co. Research LaboratoriesHamburgGermany
  2. 2.Bayer-Schering Pharma AGBerlinGermany
  3. 3.Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Centro de Investigacion LillyAlcobendas, MadridSpain
  4. 4.Zentrum für BioinformatikUniversität HamburgHamburgGermany

Personalised recommendations