Can we use docking and scoring for hit-to-lead optimization?

Article

Abstract

Docking and scoring is currently one of the tools used for hit finding and hit-to-lead optimization when structural information about the target is known. Docking scores have been found useful for optimizing ligand binding to reproduce experimentally observed binding modes. The question is, can docking and scoring be used reliably for hit-to-lead optimization? To illustrate the challenges of scoring for hit-to-lead optimization, the relationship of docking scores with experimentally determined IC50 values measured in-house were tested. The influences of the particular target, crystal structure, and the precision of the scoring function on the ability to differentiate between actives and inactives were analyzed by calculating the area under the curve of receiver operator characteristic curves for docking scores. It was found that for the test sets considered, MW and sometimes ClogP were as useful as GlideScores and no significant difference was observed between SP and XP scores for differentiating between actives and inactives. Interpretation by an expert is still required to successfully utilize docking and scoring in hit-to-lead optimization.

Keywords

Docking and scoring Glide Hit optimization ROC analysis Kinase KDR CDK2 ABL 

References

  1. 1.
    Gschwend DA, Good AC, Kuntz ID (1996) J Mol Recog 9:175CrossRefGoogle Scholar
  2. 2.
    Perola E, Walters WP, Charifson PS (2004) Proteins 56:235CrossRefGoogle Scholar
  3. 3.
    Muegge I, Rarey M (2001) In: Boyd DB, Lipkowitz KB (eds) Reviews in computational chemistry, vol 17. Wiley-VCH, New York, Ch 1, p 1Google Scholar
  4. 4.
    Muegge I, Enyedy I (2003) In: Abraham D (ed) Burger’s medicinal chemistry 5th edn. vol 1. Wiley, New York, p 243Google Scholar
  5. 5.
    Muegge I, Enyedy I (2004) In: Bultinck P, De Winter H, Langenaeker W, Tollenaere J (eds) Computational medicinal chemistry for drug discovery. Marcel Dekker Inc, New York, p 405Google Scholar
  6. 6.
    Muegge I, Enyedy IJ (2004) Curr Med Chem 11:693CrossRefGoogle Scholar
  7. 7.
    Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759CrossRefGoogle Scholar
  8. 8.
    Kroemer RT (2003) Biochem Soc Trans 31:980CrossRefGoogle Scholar
  9. 9.
    Cotesta S, Giordanetto F, Trosset JY, Crivori P, Kroemer RT, Stouten PFW, Vulpetti A (2005) Proteins 60:629CrossRefGoogle Scholar
  10. 10.
    Stouten PFW, Kroemer RT (2006) Comprehensive Medicinal Chemistry II 4:255Google Scholar
  11. 11.
    Kroemer RT (2007) Curr Protein Pept Sci 8:312CrossRefGoogle Scholar
  12. 12.
    Wang R, Lu Y, Wang S (2003) J Med Chem 46:2287CrossRefGoogle Scholar
  13. 13.
    Smith R, Hubbard RE, Gschwend DA, Leach AR, Good AC (2003) J Mol Graphics Model 22:41CrossRefGoogle Scholar
  14. 14.
    Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL III (2004) J Med Chem 47:3032CrossRefGoogle Scholar
  15. 15.
    Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47:558CrossRefGoogle Scholar
  16. 16.
    Kontoyianni M, Sokol GS, McClellan LM (2005) J Comput Chem 26:11CrossRefGoogle Scholar
  17. 17.
    Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) J Med Chem 48:962CrossRefGoogle Scholar
  18. 18.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912CrossRefGoogle Scholar
  19. 19.
    Zhou Z, Felts AK, Friesner RA, Levy RM (2007) J Chem Inf Model 47:1599CrossRefGoogle Scholar
  20. 20.
    McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) J Chem Inf Model 47:1504CrossRefGoogle Scholar
  21. 21.
    Vangrevelinghe E, Zimmermann K, Schoepfer J, Portmann R, Fabbro D, Furet P (2003) J Med Chem 46:2656CrossRefGoogle Scholar
  22. 22.
    Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long Y-Q, Roller P, Yang D, Wang S (2001) J Med Chem 44:4313CrossRefGoogle Scholar
  23. 23.
    Enyedy IJ, Lee S-L, Kuo AH, Dickson RB, Lin C-Y, Wang S (2001) J Med Chem 44:1349CrossRefGoogle Scholar
  24. 24.
    Tirado-Rives J, Jorgensen WL (2006) J Med Chem 49:5880CrossRefGoogle Scholar
  25. 25.
    Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49:5851CrossRefGoogle Scholar
  26. 26.
    Bytheway I, Cochran S (2004) J Med Chem 47:1683CrossRefGoogle Scholar
  27. 27.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177CrossRefGoogle Scholar
  28. 28.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindialov IN, Bourne PE (2000) Nucleic Acids Res 28:235CrossRefGoogle Scholar
  29. 29.
    Miyazaki Y, Matsunaga S, Tang J, Maeda Y, Nakano M, Philippe RJ, Shibahara M, Liu W, Sato H, Wang L, Nolte RT (2005) Bioorg Med Chem Lett 15:2203CrossRefGoogle Scholar
  30. 30.
    Hodous BL, Geuns-Meyer SD, Hughes PE, Albrecht BK, Bellon S, Bready J, Caenepeel S, Cee VJ, Chaffee SC, Coxon A, Emery M, Fretland J, Gallant P, Gu Y, Hoffman D, Johnson RE, Kendall R, Kim JL, Long AM, Morrison M, Olivieri PR, Patel VF, Polverino A, Rose P, Tempest P, Wang L, Whittington DA, Zhao H (2007) J Med Chem 50:611CrossRefGoogle Scholar
  31. 31.
    Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble MEM (2001) Structure 9:389CrossRefGoogle Scholar
  32. 32.
    Brown NR, Noble ME, Endicott JA, Johnson LN (1999) Nat Cell Biol 1:438CrossRefGoogle Scholar
  33. 33.
    Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Cancer Res 62:4236Google Scholar
  34. 34.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739CrossRefGoogle Scholar
  35. 35.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750CrossRefGoogle Scholar
  36. 36.
    Maestro, version 8.0.110, (2007) Schrodinger LLC, New YorkGoogle Scholar
  37. 37.
    LigPrep, version 1.2, (2007) Schrodinger LLC, New YorkGoogle Scholar
  38. 38.
    MacroModel, version 9.5.213, (2007) Schrodinger LLC, New YorkGoogle Scholar
  39. 39.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127CrossRefGoogle Scholar
  40. 40.
    Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) J Med Chem 48:2534CrossRefGoogle Scholar
  41. 41.
    Kornev AP, Haste NM, Taylor SS, Ten Eyck LF (2006) Proc Natl Acad Sci USA 103:17783CrossRefGoogle Scholar
  42. 42.
    Tirado-Rives J, Jorgensen WL (2006) J Med Chem 49:5880CrossRefGoogle Scholar
  43. 43.
    Pearlman DA, Charifson PS (2001) J Med Chem 44:3417CrossRefGoogle Scholar
  44. 44.
    Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) J Med Chem 48:2534CrossRefGoogle Scholar
  45. 45.
    Hanley JA, McNeil BJ (1982) Radiology 143:29Google Scholar
  46. 46.
    Verma S, Nagarathnam D, Shao J, Zhang L, Zhao J, Wang Y, Li T, Mull E, Enyedy I, Wang C, Zhu Q, Altieri M, Jordan J, Dang TTA, Reddy S (2005) Bioorg Med Chem Lett 15:1973CrossRefGoogle Scholar
  47. 47.
    Page CS, Bates PA (2006) J Comput Chem 27:1990CrossRefGoogle Scholar
  48. 48.
    Coupez B, Lewis RA (2006) Curr Med Chem 13:2995CrossRefGoogle Scholar
  49. 49.
    Sheu SH, Kaya T, Waxman DJ, Vajda S (2005) Biochemistry 44:1193CrossRefGoogle Scholar
  50. 50.
    Prasad JC, Goldstone JV, Camacho CJ, Vajda S, Stegeman JJ (2007) Biochemistry 46:2640CrossRefGoogle Scholar
  51. 51.
    Wang J, Hou T, Xu X (2006) Curr Comput Aided Drug Des 2:287CrossRefGoogle Scholar
  52. 52.
    Xiong Y, Li Y, He H, Zhan CG (2007) Bioorg Med Chem Lett 17:5186CrossRefGoogle Scholar
  53. 53.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Bioorg Med Chem 15:7865CrossRefGoogle Scholar
  54. 54.
    Zhou Z, Bates M, Madura JD (2006) Proteins 65:580CrossRefGoogle Scholar
  55. 55.
    Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49:4805CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Global Discovery Chemistry, Computer-Aided Drug DiscoveryNovartis Institutes for BioMedical ResearchCambridgeUSA

Personalised recommendations