Journal of Computer-Aided Molecular Design

, Volume 22, Issue 6–7, pp 479–487

LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening

  • Darryl Reid
  • Bashir S. Sadjad
  • Zsolt Zsoldos
  • Aniko Simon
Article

Abstract

Virtual Ligand Screening (VLS) has become an integral part of the drug discovery process for many pharmaceutical companies. Ligand similarity searches provide a very powerful method of screening large databases of ligands to identify possible hits. If these hits belong to new chemotypes the method is deemed even more successful. eHiTS LASSO uses a new interacting surface point types (ISPT) molecular descriptor that is generated from the 3D structure of the ligand, but unlike most 3D descriptors it is conformation independent. Combined with a neural network machine learning technique, LASSO screens molecular databases at an ultra fast speed of 1 million structures in under 1 min on a standard PC. The results obtained from eHiTS LASSO trained on relatively small training sets of just 2, 4 or 8 actives are presented using the diverse directory of useful decoys (DUD) dataset. It is shown that over a wide range of receptor families, eHiTS LASSO is consistently able to enrich screened databases and provides scaffold hopping ability.

Keywords

Conformation independent QSAR descriptor Scaffold hopping Virtual screening Ligand based screening 

Supplementary material

References

  1. 1.
    Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2006) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 7:421–435Google Scholar
  2. 2.
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 20(10–11):601–619CrossRefGoogle Scholar
  3. 3.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749CrossRefGoogle Scholar
  4. 4.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759CrossRefGoogle Scholar
  5. 5.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623CrossRefGoogle Scholar
  6. 6.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671CrossRefGoogle Scholar
  7. 7.
    Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9(6):532–549CrossRefGoogle Scholar
  8. 8.
    Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510CrossRefGoogle Scholar
  9. 9.
    Saeh JC, Lyne PD, Takasaki BK, Cosgrove DA (2005) Lead hopping using SVM and 3D pharmacophore fingerprints. J Chem Inf Model 45(4):1122–1133CrossRefGoogle Scholar
  10. 10.
    Wagener M, van Geerestein VJ (2000) Potential drugs and nondrugs: prediction and identification of important structural features. J Chem Inf Comput Sci 40(2):280–292CrossRefGoogle Scholar
  11. 11.
    Chen B, Harrison R, Papadatos G, Willett P, Wood D, Lewell X, Greenidge P, Stiefl N (2007) Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided Mol Des 21(1):53–62CrossRefGoogle Scholar
  12. 12.
    Harper G, Bradshaw J, Gittins JC, Green DV, Leach AR (2001) Prediction of biological activity for high-throughput screening using binary kernel discrimination. J Chem Inf Comput Sci 41(5):1295–1300CrossRefGoogle Scholar
  13. 13.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801CrossRefGoogle Scholar
  14. 14.
    Clark T (2004) QSAR and QSPR based solely on surface properties? J Mol Graph Model 22(6):519–525CrossRefGoogle Scholar
  15. 15.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864CrossRefGoogle Scholar
  16. 16.
    Brandstetter H, Kuhne A, Bode W, Huber R, von der Saal W, Wirthensohn K, Engh RA (1996) X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J Biol Chem 271(47):29988–29992CrossRefGoogle Scholar
  17. 17.
    Zell A Stuttgart neural network simulator. University of Stuttgart. http://www-ra.informatik.unituebingen.de/SNNS/ (04/05/2005)
  18. 18.
    Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25):4759–4767CrossRefGoogle Scholar
  19. 19.
    Pham TA, Jain AN (2006) Parameter estimation for scoring protein-ligand interactions using negative training data. J Med Chem 49(20):5856–5868CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Muegge I (2006) Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 49(5):1536–1548CrossRefGoogle Scholar
  21. 21.
    McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47(4):1504–1519CrossRefGoogle Scholar
  22. 22.
    Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82CrossRefGoogle Scholar
  23. 23.
    Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47(2):488–508CrossRefGoogle Scholar
  24. 24.
    Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48(7):2534–2547CrossRefGoogle Scholar
  25. 25.
    JChem v 3.2.4. http://www.chemaxon.com/jchem/ (06/20/2007)

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Darryl Reid
    • 1
  • Bashir S. Sadjad
    • 1
  • Zsolt Zsoldos
    • 1
  • Aniko Simon
    • 1
  1. 1.SimBioSys Inc.TorontoCanada

Personalised recommendations