Journal of Computer-Aided Molecular Design

, Volume 21, Issue 5, pp 281–306

Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search

Article

Abstract

The Surflex flexible molecular docking method has been generalized and extended in two primary areas related to the search component of docking. First, incorporation of a small-molecule force-field extends the search into Cartesian coordinates constrained by internal ligand energetics. Whereas previous versions searched only the alignment and acyclic torsional space of the ligand, the new approach supports dynamic ring flexibility and all-atom optimization of docked ligand poses. Second, knowledge of well established molecular interactions between ligand fragments and a target protein can be directly exploited to guide the search process. This offers advantages in some cases over the search strategy where ligand alignment is guided solely by a “protomol” (a pre-computed molecular representation of an idealized ligand). Results are presented on both docking accuracy and screening utility using multiple publicly available benchmark data sets that place Surflex’s performance in the context of other molecular docking methods. In terms of docking accuracy, Surflex-Dock 2.1 performs as well as the best available methods. In the area of screening utility, Surflex’s performance is extremely robust, and it is clearly superior to other methods within the set of cases for which comparative data are available, with roughly double the screening enrichment performance.

Keywords

Virtual screening Enrichment rmsd Force field Flexibility Scoring function 

References

  1. 1.
    Walters PW, Stahl MT, Murcko MA (1998) Drug Discov Today 3:160–178CrossRefGoogle Scholar
  2. 2.
    Jain AN (1996) J Comput Aided Mol Des 10:427–440CrossRefGoogle Scholar
  3. 3.
    Bohm HJ (1994) J Comput Aided Mol Des 8:243–256CrossRefGoogle Scholar
  4. 4.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425–445CrossRefGoogle Scholar
  5. 5.
    Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V (1999) J Med Chem 42:4650–4658CrossRefGoogle Scholar
  6. 6.
    Wang R, Liu L, Lai L, Tang Y (1998) J Mol Model 4:379–384CrossRefGoogle Scholar
  7. 7.
    Muegge I, Martin YC (1999) J Med Chem 42:791–804CrossRefGoogle Scholar
  8. 8.
    Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337–356CrossRefGoogle Scholar
  9. 9.
    Welch W, Ruppert J, Jain AN (1996) Chem Biol 3:449–462CrossRefGoogle Scholar
  10. 10.
    Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1–5CrossRefGoogle Scholar
  11. 11.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727–748CrossRefGoogle Scholar
  12. 12.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470–489CrossRefGoogle Scholar
  13. 13.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750–1759CrossRefGoogle Scholar
  14. 14.
    Schulz-Gasch T, Stahl M (2003) J Mol Model (Online) 9:47–57Google Scholar
  15. 15.
    Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA (2002) J Comput Aided Mol Des 16:883–902CrossRefGoogle Scholar
  16. 16.
    Jain AN (2003) J Med Chem 46:499–511CrossRefGoogle Scholar
  17. 17.
    Pham TA, Jain AN (2006) J Med Chem 49:5856–5868CrossRefGoogle Scholar
  18. 18.
    Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759–4767CrossRefGoogle Scholar
  19. 19.
    Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Proteins 57:225–242CrossRefGoogle Scholar
  20. 20.
    Miteva MA, Lee WH, Montes MO, Villoutreix BO (2005) J Med Chem 48:6012–6022CrossRefGoogle Scholar
  21. 21.
    Jain AN (2004) Curr Opin Drug Discov Devel 7:396–403Google Scholar
  22. 22.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912–5931CrossRefGoogle Scholar
  23. 23.
    Perola E, Walters WP, Charifson PS (2004) Proteins 56:235–249CrossRefGoogle Scholar
  24. 24.
    Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) J Med Chem 48:962–976CrossRefGoogle Scholar
  25. 25.
    Gasteiger J, Sadowski J, Schur J, Selzer P, Steinhauer L, Steinhauer V (1996) J Chem Inf Comput Sci 36:1030–1037CrossRefGoogle Scholar
  26. 26.
    Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J, Yeh E, Thode S, Jarnagin K, Jain AN, Morgans D, Melese T (2001) Cancer Res 61:4175–4183Google Scholar
  27. 27.
    Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC, Connolly DT, Shoichet BK (2002) J Med Chem 45:2213–2221CrossRefGoogle Scholar
  28. 28.
    Wang R, Fang X, Lu Y, Wang S (2004) J Med Chem 47:2977–2980CrossRefGoogle Scholar
  29. 29.
    Jain AN (2006) Curr Protein Pept Sci 7:407–420CrossRefGoogle Scholar
  30. 30.
    Pham TA, Jain AN (2006) J Med Chem 49:5856–5868CrossRefGoogle Scholar
  31. 31.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins 52:609–623CrossRefGoogle Scholar
  32. 32.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739–1749CrossRefGoogle Scholar
  33. 33.
    Wang R, Lai L, Wang S (2002) J Comput Aided Mol Des 16:11–26CrossRefGoogle Scholar
  34. 34.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) J Comput Aided Mol Des 14:731–751CrossRefGoogle Scholar
  35. 35.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  36. 36.
    Jain AN, Dietterich TG, Lathrop RH, Chapman D, Critchlow RE Jr, Bauer BE, Webster TA, Lozano-Perez T (1994) J Comput Aided Mol Des 8:635–652CrossRefGoogle Scholar
  37. 37.
    Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315–2327CrossRefGoogle Scholar
  38. 38.
    Jain AN, Harris NL, Park JY (1995) J Med Chem 38:1295–1308CrossRefGoogle Scholar
  39. 39.
    Dietterich TG, Lathrop RH, Lozano-Perez T (1997) Artif Intell 89:31–71CrossRefGoogle Scholar
  40. 40.
    Jain AN (2000) J Comput Aided Mol Des 14:199–213CrossRefGoogle Scholar
  41. 41.
    Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  42. 42.
    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  43. 43.
    Jain AN (2004) J Med Chem 47:947–961CrossRefGoogle Scholar
  44. 44.
    Lei S, Smith MR (2003) IEEE Trans Softw Eng 29:996–1004CrossRefGoogle Scholar
  45. 45.
    Hawkins PC, Skillman AG, Nicholls A (2007) J Med Chem 50:74–82CrossRefGoogle Scholar
  46. 46.
    Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789–6801CrossRefGoogle Scholar
  47. 47.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49:6177–6196CrossRefGoogle Scholar
  48. 48.
    Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) J Med Chem 50:726–741CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.UCSF Cancer Research Institute, Department of Biopharmaceutical Sciences, and Department of Laboratory MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations