Journal of Computer-Aided Molecular Design

, Volume 20, Issue 6, pp 375–383 | Cite as

Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling

Original Paper

Abstract

1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon–halogen bond in various halogenated compounds including TCP, but with low efficiency (kcat/K= 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel “slot” the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the (R)- over the (S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.

Keywords

Directed evolution Enantioselectivity Molecular dynamics Nucleophilic substitution Quantum mechanics Tunnels 

References

  1. 1.
    Tesoriero AJ, Loffler FE, Liebscher H (2001) Environ Sci Technol 35:455–461CrossRefGoogle Scholar
  2. 2.
    Dolfing J, Janssen DB (1994) Biodegradation 5:21–28Google Scholar
  3. 3.
    Swanson PE (1999) Curr Opin Biotechnol 10:365–369CrossRefGoogle Scholar
  4. 4.
    Verschueren KHG, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW (1993) Nature 363:693–698CrossRefGoogle Scholar
  5. 5.
    Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) Protein Eng 5:197–211Google Scholar
  6. 6.
    Newman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC (1999) Biochemistry 38:16105–16114CrossRefGoogle Scholar
  7. 7.
    Bosma T, Damborsky J, Stucki G, Janssen DB (2002) Appl Environ Microbiol 68:3582–3587CrossRefGoogle Scholar
  8. 8.
    Janssen DB (2004) Curr Opin Chem Biol 8:150–159CrossRefGoogle Scholar
  9. 9.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  10. 10.
    Vriend G (1990) J Mol Graph 8:52–56CrossRefGoogle Scholar
  11. 11.
    Goodford PJ (1985) J Med Chem 28:849–857CrossRefGoogle Scholar
  12. 12.
    Otyepka M, Damborsky J (2002) Protein Sci 11:1206–1217CrossRefGoogle Scholar
  13. 13.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Sci 117:5179–5197CrossRefGoogle Scholar
  14. 14.
    Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) J Am Chem Soc 115:9620–9631CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Frisch A, Foresman JB (1998) Gaussian 98. Gaussian Inc., PittsburghGoogle Scholar
  16. 16.
    Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Radmer RJ, Duan Y, Pitera J, Seibel GL, Singh UC, Weiner PK, Kollman PA (1999) V. AMBER 6.0. University of California, San FranciscoGoogle Scholar
  17. 17.
    Mahalanobis PC (1936) Proc Natl Inst Sci India 2:49–55Google Scholar
  18. 18.
    Lightstone FC, Zheng YJ, Bruice TC (1998) J Am Chem Soc 120:5611–5621CrossRefGoogle Scholar
  19. 19.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  20. 20.
    Damborsky J, Prokop M, Koca J (2001) Trends Biochem Sci 26:71–73CrossRefGoogle Scholar
  21. 21.
    Prokop M, Damborsky J, Koca J (2000) Bioinformatics 16:845–846CrossRefGoogle Scholar
  22. 22.
    Stewart JJP (1990) J Comput Aided Mol Des 4:1–45CrossRefGoogle Scholar
  23. 23.
    Cernohorsky M, Kuty M, Koca J (1996) Comput Chem 21:35–44CrossRefGoogle Scholar
  24. 24.
    Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) BMC Bioinformatics 7:316CrossRefGoogle Scholar
  25. 25.
    Bosma T, Pikkemaat MG, Kingma J, Dijk J, Janssen DB (2003) Biochemistry 42:8047–8053CrossRefGoogle Scholar
  26. 26.
    Oakley A, Prokop Z, Bohac M, Kmunicek J, Jedlicka T, Monincova M, Kuta-Smatanova I, Nagata Y, Damborsky J, Wilce MCJ (2002) Biochemistry 41:4847–4855CrossRefGoogle Scholar
  27. 27.
    Marek M, Vevodova J, Kuta-Smatanova I, Nagata Y, Swensson LA, Newman J, Takagi M, Damborsky J (2000) Biochemistry 39:14082–14086CrossRefGoogle Scholar
  28. 28.
    Streltsov VA, Prokop Z, Damborsky J, Nagata Y, Oakley A, Wilce MCJ (2003) Biochemistry 42:10104–10112CrossRefGoogle Scholar
  29. 29.
    Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincova M, Pavlova M, Tsuda M, Nagata Y, Damborsky J (2003) J Biol Chem 278:52622–52628CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Loschmidt Laboratories, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations