Journal of Computer-Aided Molecular Design

, Volume 20, Issue 12, pp 703–715 | Cite as

High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening

  • Theodora M. Steindl
  • Daniela Schuster
  • Gerhard Wolber
  • Christian Laggner
  • Thierry Langer
Original Paper

Abstract

In order to assess bioactivity profiles for small organic molecules we propose to use parallel pharmacophore-based virtual screening. Our aim is to provide a fast, reliable and scalable system that allows for rapid in silico activity profile prediction of virtual molecules. In this proof of principle study, carried out with the new structure-based pharmacophore modelling tool LigandScout and the high-performance database mining platform Catalyst, we present a model work for the application of parallel pharmacophore-based virtual screening on a set of 50 structure-based pharmacophore models built for various viral targets and 100 antiviral compounds. The latter were screened against all pharmacophore models in order to determine if their known biological targets could be correctly predicted via an enrichment of corresponding pharmacophores matching these ligands. The results demonstrate that the desired enrichment, i.e. a successful activity profiling, was achieved for approximately 90% of all input molecules. Additionally, we discuss descriptors for output validation, as well as various aspects influencing the analysis of the obtained activity profiles, and the effect of the searching mode utilized for screening. The results of the study presented here clearly indicate that pharmacophore-based parallel screening comprises a reliable in silico method to predict the potential biological activities of a compound or a compound library by screening it against a series of pharmacophore queries.

Keywords

Bioactivity profiling Virtual screening Pharmacophore modelling LigandScout Structure-based pharmacophores Database mining Parallel screening 

References

  1. 1.
    Langer T, Krovat E-M (2003) Curr Opin Drug Discov Dev 6:370Google Scholar
  2. 2.
    Krovat E-M, Steindl T, Langer T (2005) Curr Comput-Aided Drug Des 1:93CrossRefGoogle Scholar
  3. 3.
    Güner OF, Clement O, Kurogi Y (2005) Curr Med Chem 11:2991Google Scholar
  4. 4.
    Güner OF (2005) IDrugs 8:567Google Scholar
  5. 5.
    Langer T, Wolber G (2004) Pure Appl Chem 76:991Google Scholar
  6. 6.
    Schuster D, Langer T (2005) J Chem Inf Model 45:431CrossRefGoogle Scholar
  7. 7.
    Sanguinetti MC, Mitcheson JS (2005) Trends Pharmacol Sci 26:119CrossRefGoogle Scholar
  8. 8.
    Clement OO, Guener OF (2004) In: Testa B (ed) Proceedings of the 3rd pharmacokinetic profiling in drug research: biological, physicochemical, and computational strategies. Verlag Helvetica Chimica Acta, Zurich, pp381Google Scholar
  9. 9.
    Klabunde T, Evers A (2005) ChemBioChem 6:876CrossRefGoogle Scholar
  10. 10.
    Norinder U (2005) QSAR Environ Res 16:1CrossRefGoogle Scholar
  11. 11.
    Oloff S, Zhang S, Sukumar N, Breneman C, Tropsha A (2006) J Chem Inf Model 46:844–851CrossRefGoogle Scholar
  12. 12.
    Cleves AE, Jain AN (2006) J Med Chem 49:2921CrossRefGoogle Scholar
  13. 13.
    LigandScout 1.0 is available from Inte:Ligand GmbH, Vienna, Austria (http://www.inteligand.com/ligandscout)Google Scholar
  14. 14.
    Wolber G, Langer T (2005) J Chem Inf Model 45:160Google Scholar
  15. 15.
    Schuster D, Laggner C, Palusczak A, Hartmann RW, Langer T (2006) J Chem Inf Model 46:1301Google Scholar
  16. 16.
    Krovat E-M, Frühwirth KH, Langer T (2005) J Chem Inf Model 45:146Google Scholar
  17. 17.
    Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) Nucleic Acids Res 28:235CrossRefGoogle Scholar
  18. 18.
    Zuckerman AJ, et al (2000) Principles and practice of clinical virology, 4th edn. Wiley, Chinchester New York Weinheim Brisbane Singapore TorontoGoogle Scholar
  19. 19.
    Catalyst Version 4.11 available from Accelrys Inc, San Diego, CA, USAGoogle Scholar
  20. 20.
    Derwent World Drug Index, available in Catalyst data format from Accelrys Inc, San Diego, CA, USAGoogle Scholar
  21. 21.
    De Clercq E (2004) J Clin Virol 30:115CrossRefGoogle Scholar
  22. 22.
    Ren J, Nichols C, Bird L, Chamberlain P, Weaver K, et al (2001) J Mol Biol 312:795CrossRefGoogle Scholar
  23. 23.
    Alymova IV, Taylor G, Portner A (2005) Curr Drug Targets Infect Disord 5:401CrossRefGoogle Scholar
  24. 24.
    Hadfield AT, Diana GD, Rossmann MG (1999) Proc Natl Acad Sci USA 96:14730CrossRefGoogle Scholar
  25. 25.
    Kirchmair J, Laggner C, Wolber G, Langer T (2005) J Chem Inf Model 45:422CrossRefGoogle Scholar
  26. 26.
    Kirchmair J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Model 46:1848CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Theodora M. Steindl
    • 1
  • Daniela Schuster
    • 2
  • Gerhard Wolber
    • 1
  • Christian Laggner
    • 2
  • Thierry Langer
    • 1
    • 2
  1. 1.Inte:Ligand GmbHMaria EnzersdorfAustria
  2. 2.Institute of Pharmacy, Computer Aided Molecular Design Group, and Centre of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria

Personalised recommendations