Journal of Computer-Aided Molecular Design

, Volume 20, Issue 10–11, pp 601–619

Development and validation of a modular, extensible docking program: DOCK 5

  • Demetri T. Moustakas
  • P. Therese Lang
  • Scott Pegg
  • Eric Pettersen
  • Irwin D. Kuntz
  • Natasja Brooijmans
  • Robert C. Rizzo
Original paper

Abstract

We report on the development and validation of a new version of DOCK. The algorithm has been rewritten in a modular format, which allows for easy implementation of new scoring functions, sampling methods and analysis tools. We validated the sampling algorithm with a test set of 114 protein–ligand complexes. Using an optimized parameter set, we are able to reproduce the crystal ligand pose to within 2 Å of the crystal structure for 79% of the test cases using our rigid ligand docking algorithm with an average run time of 1 min per complex and for 72% of the test cases using our flexible ligand docking algorithm with an average run time of 5 min per complex. Finally, we perform an analysis of the docking failures in the test set and determine that the sampling algorithm is generally sufficient for the binding pose prediction problem for up to 7 rotatable bonds; i.e. 99% of the rigid ligand docking cases and 95% of the flexible ligand docking cases are sampled successfully. We point out that success rates could be improved through more advanced modeling of the receptor prior to docking and through improvement of the force field parameters, particularly for structures containing metal-based cofactors.

Keywords

Automated docking Scoring functions Structure-based drug design Flexible docking Binding mode prediction Incremental construction Validation 

References

  1. 1.
    Kopec KK, Bozyczko-Coyne D, Williams M (2005) Biochem Pharmacol 69:1133CrossRefGoogle Scholar
  2. 2.
    Congreve M, Murray CW, Blundell TL (2005) Drug Discovery Today 10:895CrossRefGoogle Scholar
  3. 3.
    Kraljevic S, Stambrook PJ, Pavelic K (2004) EMBO Rep 5:837CrossRefGoogle Scholar
  4. 4.
    Schnecke V, Bostrom J (2006) Drug Discovery Today 11:43CrossRefGoogle Scholar
  5. 5.
    Hillisch A, Pineda LF, Hilgenfeld R (2004) Drug Discovery Today 9:659CrossRefGoogle Scholar
  6. 6.
    Posner BA (2005) Curr Opin Drug Discovery Dev 8:487Google Scholar
  7. 7.
    Alvarez JC (2004) Curr Opin Chem Biol 8:365CrossRefGoogle Scholar
  8. 8.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins 52:609CrossRefGoogle Scholar
  9. 9.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47:1739CrossRefGoogle Scholar
  10. 10.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47:1750CrossRefGoogle Scholar
  11. 11.
    Kramer B, Rarey M, Lengauer T (1999) Proteins 37:228CrossRefGoogle Scholar
  12. 12.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discovery 3:935CrossRefGoogle Scholar
  13. 13.
    Shoichet BK, Bodian DL, Kuntz ID (1992) J Comput Chem 13:380CrossRefGoogle Scholar
  14. 14.
    Ewing TJA, Kuntz ID (1997) J Comput Chem 18:1175CrossRefGoogle Scholar
  15. 15.
    Leach AR, Kuntz ID (1992) J Comput Chem 13:730CrossRefGoogle Scholar
  16. 16.
    Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13:505CrossRefGoogle Scholar
  17. 17.
    Lischner R (2003) C++ in a nutshell. 1st edn. O’Reilly Media, Inc, Sebastopol, CAGoogle Scholar
  18. 18.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235CrossRefGoogle Scholar
  19. 19.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727CrossRefGoogle Scholar
  20. 20.
    Pang YP, Perola E, Xu K, Prendergast FG (2001) J Comput Chem 22:1750CrossRefGoogle Scholar
  21. 21.
    Perola E, Walters WP, Charifson PS (2004) Proteins 56:235CrossRefGoogle Scholar
  22. 22.
    Nissink JW, Murray C, Hartshorn M, Verdonk ML, Cole JC, Taylor R (2002) Proteins 49:457CrossRefGoogle Scholar
  23. 23.
    Kuhl FS, Crippen GM, Friesen DK (1984) J Comput Chem 5:24CrossRefGoogle Scholar
  24. 24.
    Nelder JA, Mead R (1965) Comput J 7:308Google Scholar
  25. 25.
    Gropp W, Lusk E, Doss N, Skjellum A (1996) Parallel Computing 22:789CrossRefGoogle Scholar
  26. 26.
    SYBYL, Tripos, Inc., St. Louis, Missouri, 63144Google Scholar
  27. 27.
    Case DA, Darden TA, Cheatham III, TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8, University of California, San FranciscoGoogle Scholar
  28. 28.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21:132CrossRefGoogle Scholar
  29. 29.
    Hann MM, Oprea TI (2004) Curr Opin Chem Biol 8:255CrossRefGoogle Scholar
  30. 30.
    Oprea TI (2002) J Comput-Aided Mol Des 16:325CrossRefGoogle Scholar
  31. 31.
    Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) J Chem Inf Model 41:1308CrossRefGoogle Scholar
  32. 32.
    Brooijmans N (2003) Theoretical studies of molecular recognition, Graduate Department of Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CAGoogle Scholar
  33. 33.
    Purcell WP, Singer JA (1967) J Chem Eng Data 12:235CrossRefGoogle Scholar
  34. 34.
    Gasteiger J, Marsili M (1980) Tetrahedron 36:3219CrossRefGoogle Scholar
  35. 35.
    Aqvist J, Warshel A (1990) J Am Chem Soc 112:2860CrossRefGoogle Scholar
  36. 36.
    Merz KM, Murcko MA, Kollman PA (1991) J Am Chem Soc 113:4484CrossRefGoogle Scholar
  37. 37.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179CrossRefGoogle Scholar
  38. 38.
    Richards FM (1977) Ann Rev Biophys Bioeng 6:151CrossRefGoogle Scholar
  39. 39.
    DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R (1988) J Med Chem 31:722CrossRefGoogle Scholar
  40. 40.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269CrossRefGoogle Scholar
  41. 41.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605CrossRefGoogle Scholar
  42. 42.
    Meng EC, Lewis RA (1991) J Comput Chem 12:891CrossRefGoogle Scholar
  43. 43.
    Mills JEJ, Dean PM (1996) J Comput-Aided Mol Des 10:607CrossRefGoogle Scholar
  44. 44.
    Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177CrossRefGoogle Scholar
  45. 45.
    The results for the FlexX test set are available at http://www.biosolveit.de/FlexX/Google Scholar
  46. 46.
    The results for the GOLD test set are available at http://www.ccdc.cam.ac.uk/products/life_sciences/validate/gold_validation/value.htmlGoogle Scholar
  47. 47.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) J Comput-Aided Mol Des 14:731CrossRefGoogle Scholar
  48. 48.
    Kuntz ID, Agard DA (2003) Adv Protein Chem 66:1Google Scholar
  49. 49.
    Gschwend DA, Kuntz ID (1996) J Comput-Aided Mol Des 10:123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Demetri T. Moustakas
    • 1
    • 2
  • P. Therese Lang
    • 3
  • Scott Pegg
    • 4
  • Eric Pettersen
    • 4
  • Irwin D. Kuntz
    • 4
  • Natasja Brooijmans
    • 3
  • Robert C. Rizzo
    • 5
  1. 1.Joint Graduate Program in BioengineeringUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Joint Graduate Program in BioengineeringUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Graduate Program in Chemistry and Chemical BiologyUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUSA
  5. 5.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA

Personalised recommendations