Journal of Computer-Aided Molecular Design

, Volume 20, Issue 2, pp 83–95 | Cite as

Investigation of substituent effect of 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides on CCR5 binding affinity using QSAR and virtual screening techniques

  • Antreas Afantitis
  • Georgia Melagraki
  • Haralambos Sarimveis
  • Panayiotis A.  Koutentis
  • John Markopoulos
  • Olga Igglessi-Markopoulou
Article

Summary

A linear quantitative–structure activity relationship model is developed in this work using Multiple Linear Regression Analysis as applied to a series of 51 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides derivatives with CCR5 binding affinity. For the selection of the best variables the Elimination Selection-Stepwise Regression Method (ES-SWR) is utilized. The predictive ability of the model is evaluated against a set of 13 compounds. Based on the produced QSAR model and an analysis on the domain of its applicability, the effects of various structural modifications on biological activity are investigated. The study leads to a number of guanidine derivatives with significantly improved predicted activities.

Keywords

CCR5 binding affinity QSAR virtual screening 

References

  1. 1.
    Burrows J.N., Cumming J.G., Fillery S.M., Hamlin G.A., Hudson J.A., Jackson R.J., McLaughlin S., Shaw J.S., (2005) Bioorg. Med. Chem. Lett. 15: 25CrossRefGoogle Scholar
  2. 2.
    Kazmierski W., Bifoulco N., Yang H., Boone L., DeAnda F., Watson C., Kenakin T., (2003) Bioorg. Med. Chem. 11: 2663CrossRefGoogle Scholar
  3. 3.
    Pipitone N., Pitzalis C., (2000) Curr. Opin. Anti-inflammat. Immunomodulat. Invset. Drugs 2: 9Google Scholar
  4. 4.
    Sellebjerg F., Madsen H.O., Jensen C.V., Jensen J., Garred P.J, (2000) J. Neuroimmunol. 102: 98CrossRefGoogle Scholar
  5. 5.
    Fischereder M., Luckow B., Wuthrich R.P., Rothenpieler U., Schneeberger H., Panzer U., Stahl R.A.K., Hauser I.A, Budde K., Neumayer H.-H., Kramer B.K., Land W., Schlondorff D., (2001) Lancet 387: 1758CrossRefGoogle Scholar
  6. 6.
    Andres P.G., Beck P.L., Mizoguchi E., Mizoguchi A., Bhan A.K., Dawson T., Kuziel W.A., Maeda N., MacDermott N., Podolsky R.P, Reinecker D.K., (2000) J. Immunol. 164: 6303Google Scholar
  7. 7.
    Debnath A.K., (2003) J. Med. Chem. 46: 4501CrossRefGoogle Scholar
  8. 8.
    Xu Y., Liu H., Niu C., Luo C., Shen J., Chen K., Jiang H., (2004) Bioorg. Med. Chem. 12: 6193CrossRefGoogle Scholar
  9. 9.
    Song M., Breneman C.M., Sukumar N., (2004) Bioorg. Med. Chem. 12: 489CrossRefGoogle Scholar
  10. 10.
    Leonard J.T., Roy K., (2004) QSAR Comb. Sci. 23: 387CrossRefGoogle Scholar
  11. 11.
    Roy K., Leonard J.T., (2005) J. Chem. Inf. Model. 45: 1352CrossRefGoogle Scholar
  12. 12.
    Todeschini, R., Consonni, V., Mannhold, R. (Series Editor), Kubinyi, H. (Series Editor) and Timmerman, H. (Series Editor), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000Google Scholar
  13. 13.
    Efroymson, M.A., In Ralston, A. and Wilf, H.S. (Eds.), Mathematical Methods for Digital Computers, Wiley, NY, 1960Google Scholar
  14. 14.
    Efron B., (1983) J. Am. Stat. Assoc., 78: 316CrossRefGoogle Scholar
  15. 15.
    Osten D.W., (1998) J. Chemom. 2: 39CrossRefGoogle Scholar
  16. 16.
    Wold, S. and Eriksson, L., In Van de Waterbeemd, H. (Ed.), Chemometrics Methods In Molecular Design, VCH Weinheim, Germany, 1995Google Scholar
  17. 17.
    Tropsha A., Gramatica P., Gombar V.K., (2003) QSAR Comb. Sci. 22: 1CrossRefGoogle Scholar
  18. 18.
    Golbraikh A., Tropsha A., (2002) J. Mol. Graph. Mod. 20: 269CrossRefGoogle Scholar
  19. 19.
    Shen M., Beguin C., Golbraikh A., Stables J., Kohn H., Tropsha A., (2004) J. Med. Chem. 47: 2356CrossRefGoogle Scholar
  20. 20.
    Atkinson A. 1985. Plots, Transformations and Regression. Clarendon Press, Oxford (UK)Google Scholar
  21. 21.
    Walters W.P.A., Murcko M.A., (1999) Curr. Opin. Chem. Biol. 3: 384CrossRefGoogle Scholar
  22. 22.
    Devillers, J. (Ed.), Comparative QSAR. Taylor and Francis, Washington, DC, 1998Google Scholar
  23. 23.
    Hansch C., Leo A., 1995. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. ACS, Washington, DCGoogle Scholar
  24. 24.
    Melagraki G., Afantitis A., Sarimveis H., Igglessi-Markopoulou O., Supuran C.T, (2006). Bioorg. Med. Chem. 14: 1108CrossRefGoogle Scholar
  25. 25.
    Melagraki, G., Afantitis, Α., Sarimveis, H., Igglessi-Markopoulou, O. and Alexandridis, A., Mol. Div. (2006) In Press ID AP_11030_2005_9008Google Scholar
  26. 26.
    Golbraikh A., Tropsha A., (2000) Mol. Div. 5: 231CrossRefGoogle Scholar
  27. 27.
    Aptula A.O., Jeliazkova N.G., Schultz T.W., Cronin M.T.D., (2005) QSAR Comb. Sci. 24: 385CrossRefGoogle Scholar
  28. 28.
    Afantitis, Α., Melagraki, G., Sarimveis, H., Koutentis, P.A., Markopoulos, J. and Igglessi-Markopoulou, O., Mol. Div. (2006) In Press DOI MODI28R2Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Antreas Afantitis
    • 1
    • 2
  • Georgia Melagraki
    • 1
  • Haralambos Sarimveis
    • 1
  • Panayiotis A.  Koutentis
    • 3
  • John Markopoulos
    • 4
  • Olga Igglessi-Markopoulou
    • 1
  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of ChemoInformaticsNovaMechanics LtdLarnacaCyprus
  3. 3.Department of ChemistryUniversity of CyprusNicosiaCyprus
  4. 4.Department of ChemistryUniversity of AthensAthensGreece

Personalised recommendations