Journal of Computer-Aided Molecular Design

, Volume 19, Issue 9–10, pp 705–713 | Cite as

Why relevant chemical information cannot be exchanged without disclosing structures

Article

Summary

Both society and industry are interested in increasing the safety of pharmaceuticals. Potentially dangerous compounds could be filtered out at early stages of R&D by computer prediction of biological activity and ADMET characteristics. Accuracy of such predictions strongly depends on the quality & quantity of information contained in a training set. Suggestion that some relevant chemical information can be added to such training sets without disclosing chemical structures was generated at the recent ACS Symposium. We presented arguments that such safety exchange of relevant chemical information is impossible. Any relevant information about chemical structures can be used for search of either a particular compound itself or its close analogues. Risk of identifying such structures is enough to prevent pharma industry from relevant chemical information exchange.

Kew words

biological activity spectra computer prediction PASS relevant chemical information reverse engineering safety exchange structure disclosing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.cas.orgGoogle Scholar
  2. 2.
    http://www.mdl.com/products/knowledge/crossfire_beilstein/Google Scholar
  3. 3.
    http://www.chemfinder.comGoogle Scholar
  4. 4.
    Bohacek R.S., McMartin C., Guida W.C., (1996) Med. Res. Rev. 16:3CrossRefGoogle Scholar
  5. 5.
    Pirmohamed M., Park B.K.. (2001) Trends Pharm. Sci. 22:298CrossRefGoogle Scholar
  6. 6.
    Poroikov V.V., Filimonov D.A.J., 2002 Comput. Aided Mol. Des. 16:819CrossRefGoogle Scholar
  7. 7.
    Poroikov, V. and Filimonov, D. In Christoph Helma (Ed.), Predictive Toxicology, Taylor & Francis, 2005, pp. 459–478Google Scholar
  8. 8.
    Van de Waterbeemd H., De Groot M., 2003 Nat. Rev. Drug. Discov. 2:192CrossRefGoogle Scholar
  9. 9.
    Safe exchange of chemical information: can relevant chemical information be exchanged without disclosing chemical structures. Symposium in the framework of 229th␣National Spring ACS Meeting, San Diego, CA (March 13–17, 2005)Google Scholar
  10. 10.
    http://www.mdl.comGoogle Scholar
  11. 11.
    Filimonov D., Poroikov V., Borodina Yu., Gloriozova T., (1999) J. Chem. Inf. Comput. Sci. 39:666CrossRefGoogle Scholar
  12. 12.
    http://cactus.nci.nih.govGoogle Scholar
  13. 13.
    Sadowski J., (1997) J. Comput. Aided. Mol. Des. 11:53CrossRefGoogle Scholar
  14. 14.
    Baurin N., Mozziconacci J.-C., Arnoult E., Chavatte P., Marot C., Morin-Allory L., (1997) J. Chem. Inf. Comput. Sci. 44:276CrossRefGoogle Scholar
  15. 15.
    Fang X., Shao L., Zhang H., Wang S., (1997) J. Chem. Inf. Comput. Sci. 44:249CrossRefGoogle Scholar
  16. 16.
    http://www.prestwickchemical.comGoogle Scholar
  17. 17.
    Poroikov V.V., Filimonov D.A., Ihlenfeldt W.-D., Gloriozova T.A., Lagunin A.A., Borodina Yu.V., Stepanchikova A.V., Nicklaus M.C., 2003 J. Chem. Inform. Comput. Sci. 43:228CrossRefGoogle Scholar
  18. 18.
    Schneier, B. Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons, 2000, p. 432Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.MoscowRussia

Personalised recommendations