Journal of Computer-Aided Molecular Design

, Volume 19, Issue 9–10, pp 637–650 | Cite as

Reverse engineering chemical structures from molecular descriptors: how many solutions?

  • Jean-Loup Faulon
  • W. Michael Brown
  • Shawn Martin
Article

Summary

Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

Keywords

enumeration molecular fragments molecular design structure–properties relationships topological indices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded in part by the U.S. Department of Energy’s Genomics: GTL program (www.doegenomestolife.org) under project, “Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling” (www.genomes-to-life.org). This work was also funded by Sandia National Laboratories Computer Science Research Fund. Sandia is a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    Kier L.B., (1985).Quant. Struct.-Act. Relat. 4: 109CrossRefGoogle Scholar
  2. 2.
    Randic M., (1975) J. Am. Chem. Soc. 97: 6609CrossRefGoogle Scholar
  3. 3.
    Wiener H., (1947) J. Am. Chem. Soc. 69: 17CrossRefGoogle Scholar
  4. 4.
    Balaban A.T., (1994) J. Chem. Inf. Comput. Sci. 34: 398CrossRefGoogle Scholar
  5. 5.
    Bonchev D., Trinajstic N., (1982) Int. J. Quantum Chem. 16: 463Google Scholar
  6. 6.
    Tong W., Lowis D.R., Perkins R., Chen Y., Welsh W.J., Goddette D.W., Heritage T., Sheehan D.M., (1998) J. Chem. Inf. Comput. Sci. 38: 669CrossRefGoogle Scholar
  7. 7.
    Zefirov N.S., Palyulin V.A., (2002) J. Chem. Inf. Comput. Sci. 45: 1112CrossRefGoogle Scholar
  8. 8.
    Bender A., Mussa H.Y., Glen R.C., Reiling S., (2004) J. Chem. Inf. Comput. Sci. 44: 170CrossRefGoogle Scholar
  9. 9.
    Filimonov D.A., Poroikov V., Borodina Y., Gloriozova T., (1999) J. Chem. Inf. Comput. Sci. 39: 666CrossRefGoogle Scholar
  10. 10.
    Poroikov V.V., Filimonov D.A., Ihlenfeldt W.-D., Gloriozova T.A., Lagunin A.A., Borodina Y.V., Stepanchikova A.V., Nicklaus M.C., (2003) J. Chem. Inf. Comput. Sci. 43: 228CrossRefGoogle Scholar
  11. 11.
    Faulon J.-L., (1994) J. Chem. Inf. Comput. Sci. 34: 1204CrossRefGoogle Scholar
  12. 12.
    Faulon J.L., Visco D.P. Jr., Pophale R.S., (2003) J. Chem. Inf. Comput. Sci. 43: 707CrossRefGoogle Scholar
  13. 13.
    Faulon J.-L., Collins M.J., Carr R.D., (2004) J. Chem. Inf. Comput. Sci. 44: 427CrossRefGoogle Scholar
  14. 14.
    Churchwell C.J., Rintoul M.D., Martin S., Visco D.P., Kotu A., Larson R.S., Sillerud L.O., Brown D.C., Faulon J.-L., (2004) J. Mol. Graph. Model 22: 263CrossRefGoogle Scholar
  15. 15.
    Faulon J.-L., (1996) J. Chem. Inf. Comput. Sci. 36: 731CrossRefGoogle Scholar
  16. 16.
    Faulon J.-L., Churchwell C.J., J.D.P.V. Jr., (2003) J. Chem. Inf. Comput. Sci. 43: 721CrossRefGoogle Scholar
  17. 17.
    Sheridan R.P., Kearsley S.K., (1995) J. Chem. Inf. Comput. Sci. 35: 310CrossRefGoogle Scholar
  18. 18.
    Venkatasubramanian V., Chen K., Caruthers J.M., (1995) J. Chem. Inf. Comput. Sci. 35: 188CrossRefGoogle Scholar
  19. 19.
    Kvasnicka V., Pospichal J., (1996) J. Chem. Inf. Comput. Sci. 36: 516CrossRefGoogle Scholar
  20. 20.
    Hall L.H., Dailey R.S., Kier L.B., (1993) J. Chem. Inf. Comput. Sci. 33: 598CrossRefGoogle Scholar
  21. 21.
    Kier L.B., Hall L.H., Frazer J.W., (1993) J. Chem. Inf. Comput. Sci. 33: 143Google Scholar
  22. 22.
    Kier L.B., Hall L.H., Frazer J.W., (1993) J. Chem. Inf. Comput. Sci. 33: 148Google Scholar
  23. 23.
    Skvortsova M.I., Baskin I.I., Slovokhotova O.L., Palyulin V.A., Zefirov N.S., (1993) J. Chem. Inf. Comput. Sci. 33: 630CrossRefGoogle Scholar
  24. 24.
    Godden J.W., Stahura F.L., Bajorath J., (2000) J. Chem. Inf. Comput. Sci. 40: 796CrossRefGoogle Scholar
  25. 25.
    Cover, T.M. and Thomas, J.A., Elements of Information Theory. Wiley Series in Telecommunications, ed. Wiley. John Wiley & Sons, Inc., New York, 1991, 542 ppGoogle Scholar
  26. 26.
    Matlab 7. MathWorks, (2005)Google Scholar
  27. 27.
    Hawkins D.M., (2004) J. Chem. Inf. Comput. Sci. 44: 1CrossRefGoogle Scholar
  28. 28.
    Joachims , T., In Scholkopf, B., Burges, C.J.C., Smola, A.J., (Eds.), Advances in Kernel Methods-Support Vector Learning MIT Press Cambridge, MA 169, 1999Google Scholar
  29. 29.
    Hart, W.E., SGOPT: A C++ Library of Global Optimization Methods. in IMSL. 1997Google Scholar
  30. 30.
    Faulon J.-L., (1992) J. Chem. Inf. Comput. Sci. 32: 338Google Scholar
  31. 31.
    PubChem. National Library of Medicine, (2005)Google Scholar
  32. 32.
    Bicerno, J., Prediction of Polymer Properties. 3rd Edtion. Marcel Dekker, New York, 2002Google Scholar
  33. 33.
    Zernov V.V., Balakin K.V., Ivaschenko A.A., Savchuk N.P., Pletnev I.V., (2003) J. Chem. Inf. Comput. Sci. 43: 2048CrossRefGoogle Scholar
  34. 34.
    Momma, M. and Bennett, K.P., In SIAM Proceedings Series, Arlington, 2002Google Scholar
  35. 35.
    Quang, A.T., Zhang, Q.-L. and Xing, L., In Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 2002Google Scholar
  36. 36.
    Bender A., Mussa H.Y., Glen R.C., Reiling S., (2004) J. Chem. Inf. Comput. Sci. 44: 1708CrossRefGoogle Scholar
  37. 37.
    Baskin I.I., Skvortsova M.I., Stankevich I.V., Zefirov N.S., (1995) J. Chem. Inf. Comput. Sci. 35: 527CrossRefGoogle Scholar
  38. 38.
    Skvortsova M.I., Baskin I.I., Skvortsova L.A., Palyulin V.A., Stankevich I.V., Zefirov N.S., (1999) Theochem: J. Mol. Struct. 466: 211–217CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jean-Loup Faulon
    • 1
  • W. Michael Brown
    • 2
  • Shawn Martin
    • 2
  1. 1.Computational BioscienceSandia National LaboratoriesLivermoreUSA
  2. 2.Computational BiologySandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations